Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Shape Analysis and Deployment of the ExaVolt Antenna

Shape Analysis and Deployment of the ExaVolt Antenna The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Astronomical Instrumentation World Scientific Publishing Company

Shape Analysis and Deployment of the ExaVolt Antenna

Journal of Astronomical Instrumentation , Volume 06 (02): 1 – Jun 2, 2017

Abstract

The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector.

Loading next page...
 
/lp/world-scientific-publishing-company/shape-analysis-and-deployment-of-the-exavolt-antenna-afuryJsD8R

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
World Scientific Publishing Company
Copyright
Copyright ©
Subject
Special Issue on Scientific Balloon Technologies; Editors: Jessica A. Gaskin, Shaul Hanany and Eliot F. Young
ISSN
2251-1717
eISSN
2251-1725
DOI
10.1142/S2251171717400049
Publisher site
See Article on Publisher Site

Abstract

The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector.

Journal

Journal of Astronomical InstrumentationWorld Scientific Publishing Company

Published: Jun 2, 2017

Keywords: Large aperture radio telescope deployable reflector antenna superpressure balloon

There are no references for this article.