Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Treatment and Prevention of Brain Metastases in Small Cell Lung Cancer

Treatment and Prevention of Brain Metastases in Small Cell Lung Cancer Central nervous system (CNS) metastasis will develop in 50% of small cell lung cancer (SCLC) patients throughout disease course. Development of CNS metastasis poses a particular treatment dilemma due to the accompanied cognitive changes, poor permeability of the blood-brain barrier to systemic therapy and relatively advanced state of disease. Survival of patients with untreated SCLC brain metastases is generally <3 months with whole brain radiotherapy used as first-line management in most SCLC patients. To prevent development of CNS metastasis prophylactic cranial irradiation (PCI) is recommended in limited stage disease, after response to chemotherapy and radiation, while PCI may be considered in extensive stage disease after favorable response to upfront treatment. Neurocognitive toxicity with whole brain radiotherapy and PCI is a concern and remains difficult to predict. The mechanism of toxicity is likely multifactorial, but a potential mechanism of injury to the hippocampus has led to hippocampal sparing radiation techniques. Treatment of established non–small cell lung cancer CNS metastases has increasingly focused on using stereotactic radiotherapy (SRS) and it is tempting to extrapolate these results to SCLC. In this review, we explore the evidence surrounding the prediction, prevention, detection, and treatment of CNS metastases in SCLC. We further review whether existing evidence supports extrapolating less toxic treatments to SCLC patients with CNS metastases and discuss trials that may shed more light on this question. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Clinical Oncology Wolters Kluwer Health

Treatment and Prevention of Brain Metastases in Small Cell Lung Cancer

Loading next page...
 
/lp/wolters-kluwer-health/treatment-and-prevention-of-brain-metastases-in-small-cell-lung-cancer-z1j782LHfo

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Wolters Kluwer Health
Copyright
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
0277-3732
eISSN
1537-453X
DOI
10.1097/coc.0000000000000867
Publisher site
See Article on Publisher Site

Abstract

Central nervous system (CNS) metastasis will develop in 50% of small cell lung cancer (SCLC) patients throughout disease course. Development of CNS metastasis poses a particular treatment dilemma due to the accompanied cognitive changes, poor permeability of the blood-brain barrier to systemic therapy and relatively advanced state of disease. Survival of patients with untreated SCLC brain metastases is generally <3 months with whole brain radiotherapy used as first-line management in most SCLC patients. To prevent development of CNS metastasis prophylactic cranial irradiation (PCI) is recommended in limited stage disease, after response to chemotherapy and radiation, while PCI may be considered in extensive stage disease after favorable response to upfront treatment. Neurocognitive toxicity with whole brain radiotherapy and PCI is a concern and remains difficult to predict. The mechanism of toxicity is likely multifactorial, but a potential mechanism of injury to the hippocampus has led to hippocampal sparing radiation techniques. Treatment of established non–small cell lung cancer CNS metastases has increasingly focused on using stereotactic radiotherapy (SRS) and it is tempting to extrapolate these results to SCLC. In this review, we explore the evidence surrounding the prediction, prevention, detection, and treatment of CNS metastases in SCLC. We further review whether existing evidence supports extrapolating less toxic treatments to SCLC patients with CNS metastases and discuss trials that may shed more light on this question.

Journal

American Journal of Clinical OncologyWolters Kluwer Health

Published: Dec 11, 2021

References