Access the full text.
Sign up today, get DeepDyve free for 14 days.
PURPOSEThe ability to accurately predict an individual's risk for cancer is critical to the implementation of precision prevention measures. Current cancer risk predictions are frequently made with simple models that use a few proven risk factors, such as the Gail model for breast cancer, which are easy to interpret, but may theoretically be less accurate than advanced machine learning (ML) models.METHODSWith the UK Biobank, a large prospective study, we developed models that predicted 13 cancer diagnoses within a 10-year time span. ML and linear models fit with all features, linear models fit with 10 features, and externally developed QCancer models, which are available to more than 4,000 general practices, were assessed.RESULTSThe average area under the receiver operator curve (AUC) of the linear models (0.722, SE = 0.015) was greater than the average AUC of the ML models (0.720, SE = 0.016) when all 931 features were used. Linear models with only 10 features generated an average AUC of 0.706 (SE 0.015), which was comparable to the complex models using all features and greater than the average AUC of the QCancer models (0.684, SE 0.021). The high performance of the 10-feature linear model may be caused by the consideration of often omitted feature types, including census records and genetic information.CONCLUSIONThe high performance of the 10-feature linear models indicate that unbiased selection of diverse features, not ML models, may lead to impressively accurate predictions, possibly enabling personalized screening schedules that increase cancer survival.
JCO: Clinical Cancer Informatics – Wolters Kluwer Health
Published: Mar 3, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.