Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Rho-GTPase–Dependent Platelet-Neutrophil Interaction Affected by HMG-CoA Reductase Inhibition With Altered Adenosine Nucleotide Release and Function

Rho-GTPase–Dependent Platelet-Neutrophil Interaction Affected by HMG-CoA Reductase... Platelet activation and aggregation is considered a crucial step in the initiation and aggravation of arterial thrombosis. ADP from activated platelets is recognized as major factor in thrombus formation and is a potent stimulator of oxygen-free radical release from neutrophils. The aim of the present investigation was to determine in vitro the direct effects of statins on ATP and ADP secretion by platelets and its impact on subsequent oxidative burst activity in neutrophils. Human neutrophils and platelets were isolated from peripheral blood. Levels of platelet-derived ATP and ADP were measured by high-performance liquid chromatography, oxygen-free radical release of neutrophils was measured fluorometrically, and chemotaxis experiments were performed. Rho-GTPases were studied by Western blot analysis. Thrombin-activated platelets primed neutrophils for enhanced oxygen-free radical release on triggering with formyl-Met-Leu-Phe, reduced by cerivastatin and simvastatin treatment of platelets. The two statins decreased the amount of adenosine-derivative release in these cells. Rho-GTPases, required for the thrombin signaling in platelets and neutrophils, were decreased after coincubation with statins. Data demonstrate that inhibition of Rho-GTPases by statins inhibit platelet ADP and ATP release and the consecutive augmentation of neutrophil oxygen-free radical release. Statins affect platelet-neutrophil interactions by altering Rho-GTPase–dependent adenosine nucleotide function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arteriosclerosis, Thrombosis, and Vascular Biology Wolters Kluwer Health

Rho-GTPase–Dependent Platelet-Neutrophil Interaction Affected by HMG-CoA Reductase Inhibition With Altered Adenosine Nucleotide Release and Function

Loading next page...
 
/lp/wolters-kluwer-health/rho-gtpase-ndash-dependent-platelet-neutrophil-interaction-affected-by-lsoYvTdRWt

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1079-5642
eISSN
1524-4636

Abstract

Platelet activation and aggregation is considered a crucial step in the initiation and aggravation of arterial thrombosis. ADP from activated platelets is recognized as major factor in thrombus formation and is a potent stimulator of oxygen-free radical release from neutrophils. The aim of the present investigation was to determine in vitro the direct effects of statins on ATP and ADP secretion by platelets and its impact on subsequent oxidative burst activity in neutrophils. Human neutrophils and platelets were isolated from peripheral blood. Levels of platelet-derived ATP and ADP were measured by high-performance liquid chromatography, oxygen-free radical release of neutrophils was measured fluorometrically, and chemotaxis experiments were performed. Rho-GTPases were studied by Western blot analysis. Thrombin-activated platelets primed neutrophils for enhanced oxygen-free radical release on triggering with formyl-Met-Leu-Phe, reduced by cerivastatin and simvastatin treatment of platelets. The two statins decreased the amount of adenosine-derivative release in these cells. Rho-GTPases, required for the thrombin signaling in platelets and neutrophils, were decreased after coincubation with statins. Data demonstrate that inhibition of Rho-GTPases by statins inhibit platelet ADP and ATP release and the consecutive augmentation of neutrophil oxygen-free radical release. Statins affect platelet-neutrophil interactions by altering Rho-GTPase–dependent adenosine nucleotide function.

Journal

Arteriosclerosis, Thrombosis, and Vascular BiologyWolters Kluwer Health

Published: Jun 1, 2002

There are no references for this article.