Access the full text.
Sign up today, get DeepDyve free for 14 days.
PURPOSE: The prediction of clinical outcomes for patients with cancer is central to precision medicine and the design of clinical trials. We developed and validated machine-learning models for three important clinical end points in patients with advanced non-small-cell lung cancer (NSCLC)-bjective response (OR), progression-free survival (PFS), and overall survival (OS)-using routinely collected patient and disease variables. METHODS: We aggregated patient-level data from 17 randomized clinical trials recently submitted to the US Food and Drug Administration evaluating molecularly targeted therapy and immunotherapy in patients with advanced NSCLC. To our knowledge, this is one of the largest studies of NSCLC to consider biomarker and inhibitor therapy as candidate predictive variables. We developed a stochastic tumor growth model to predict tumor response and explored the performance of a range of machine-learning algorithms and survival models. Models were evaluated on out-of-sample data using the standard area under the receiver operating characteristic curve and concordance index (C-index) performance metrics. RESULTS: Our models achieved promising out-of-sample predictive performances of 0.79 area under the receiver operating characteristic curve (95% CI, 0.77 to 0.81), 0.67 C-index (95% CI, 0.66 to 0.69), and 0.73 C-index (95% CI, 0.72 to 0.74) for OR, PFS, and OS, respectively. The calibration plots for PFS and OS suggested good agreement between actual and predicted survival probabilities. In addition, the Kaplan-Meier survival curves showed that the difference in survival between the low- and high-risk groups was significant (log-rank test P < .001) for both PFS and OS. CONCLUSION: Biomarker status was the strongest predictor of OR, PFS, and OS in patients with advanced NSCLC treated with immune checkpoint inhibitors and targeted therapies. However, single biomarkers have limited predictive value, especially for programmed death-ligand 1 immunotherapy. To advance beyond the results achieved in this study, more comprehensive data on composite multiomic signatures is required.
JCO Clinical Cancer Informatics – Wolters Kluwer Health
Published: Sep 20, 2019
Keywords: CD274, ALK, EGFR, MTUS1, SLC17A5, KRAS, TENM1
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.