Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Machine-Learning and Stochastic Tumor Growth Models for Predicting Outcomes in Patients With Advanced Non-Small-Cell Lung Cancer

Machine-Learning and Stochastic Tumor Growth Models for Predicting Outcomes in Patients With... PURPOSE: The prediction of clinical outcomes for patients with cancer is central to precision medicine and the design of clinical trials. We developed and validated machine-learning models for three important clinical end points in patients with advanced non-small-cell lung cancer (NSCLC)-bjective response (OR), progression-free survival (PFS), and overall survival (OS)-using routinely collected patient and disease variables. METHODS: We aggregated patient-level data from 17 randomized clinical trials recently submitted to the US Food and Drug Administration evaluating molecularly targeted therapy and immunotherapy in patients with advanced NSCLC. To our knowledge, this is one of the largest studies of NSCLC to consider biomarker and inhibitor therapy as candidate predictive variables. We developed a stochastic tumor growth model to predict tumor response and explored the performance of a range of machine-learning algorithms and survival models. Models were evaluated on out-of-sample data using the standard area under the receiver operating characteristic curve and concordance index (C-index) performance metrics. RESULTS: Our models achieved promising out-of-sample predictive performances of 0.79 area under the receiver operating characteristic curve (95% CI, 0.77 to 0.81), 0.67 C-index (95% CI, 0.66 to 0.69), and 0.73 C-index (95% CI, 0.72 to 0.74) for OR, PFS, and OS, respectively. The calibration plots for PFS and OS suggested good agreement between actual and predicted survival probabilities. In addition, the Kaplan-Meier survival curves showed that the difference in survival between the low- and high-risk groups was significant (log-rank test P < .001) for both PFS and OS. CONCLUSION: Biomarker status was the strongest predictor of OR, PFS, and OS in patients with advanced NSCLC treated with immune checkpoint inhibitors and targeted therapies. However, single biomarkers have limited predictive value, especially for programmed death-ligand 1 immunotherapy. To advance beyond the results achieved in this study, more comprehensive data on composite multiomic signatures is required. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JCO Clinical Cancer Informatics Wolters Kluwer Health

Machine-Learning and Stochastic Tumor Growth Models for Predicting Outcomes in Patients With Advanced Non-Small-Cell Lung Cancer

Loading next page...
 
/lp/wolters-kluwer-health/machine-learning-and-stochastic-tumor-growth-models-for-predicting-0RiCReK3PP
Publisher
Wolters Kluwer Health
Copyright
(C) 2019 by Lippincott Williams & Wilkins, Inc.
ISSN
2473-4276
DOI
10.1200/CCI.19.00046
Publisher site
See Article on Publisher Site

Abstract

PURPOSE: The prediction of clinical outcomes for patients with cancer is central to precision medicine and the design of clinical trials. We developed and validated machine-learning models for three important clinical end points in patients with advanced non-small-cell lung cancer (NSCLC)-bjective response (OR), progression-free survival (PFS), and overall survival (OS)-using routinely collected patient and disease variables. METHODS: We aggregated patient-level data from 17 randomized clinical trials recently submitted to the US Food and Drug Administration evaluating molecularly targeted therapy and immunotherapy in patients with advanced NSCLC. To our knowledge, this is one of the largest studies of NSCLC to consider biomarker and inhibitor therapy as candidate predictive variables. We developed a stochastic tumor growth model to predict tumor response and explored the performance of a range of machine-learning algorithms and survival models. Models were evaluated on out-of-sample data using the standard area under the receiver operating characteristic curve and concordance index (C-index) performance metrics. RESULTS: Our models achieved promising out-of-sample predictive performances of 0.79 area under the receiver operating characteristic curve (95% CI, 0.77 to 0.81), 0.67 C-index (95% CI, 0.66 to 0.69), and 0.73 C-index (95% CI, 0.72 to 0.74) for OR, PFS, and OS, respectively. The calibration plots for PFS and OS suggested good agreement between actual and predicted survival probabilities. In addition, the Kaplan-Meier survival curves showed that the difference in survival between the low- and high-risk groups was significant (log-rank test P < .001) for both PFS and OS. CONCLUSION: Biomarker status was the strongest predictor of OR, PFS, and OS in patients with advanced NSCLC treated with immune checkpoint inhibitors and targeted therapies. However, single biomarkers have limited predictive value, especially for programmed death-ligand 1 immunotherapy. To advance beyond the results achieved in this study, more comprehensive data on composite multiomic signatures is required.

Journal

JCO Clinical Cancer InformaticsWolters Kluwer Health

Published: Sep 20, 2019

Keywords: CD274, ALK, EGFR, MTUS1, SLC17A5, KRAS, TENM1

References