Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Improving Adjuvant Liver-Directed Treatment Recommendations for Unresectable Hepatocellular Carcinoma: An Artificial Intelligence–Based Decision-Making Tool

Improving Adjuvant Liver-Directed Treatment Recommendations for Unresectable Hepatocellular... PURPOSELiver-directed therapy after transarterial chemoembolization (TACE) can lead to improvement in survival for selected patients with unresectable hepatocellular carcinoma (HCC). However, there is uncertainty in the appropriate application and modality of therapy in current clinical practice guidelines. The aim of this study was to develop a proof-of-concept, machine learning (ML) model for treatment recommendation in patients previously treated with TACE and select patients who might benefit from additional treatment with combination stereotactic body radiotherapy (SBRT) or radiofrequency ablation (RFA).METHODSThis retrospective observational study was based on data from an urban, academic hospital system selecting for patients diagnosed with stage I-III HCC from January 1, 2008, to December 31, 2018, treated with TACE, followed by adjuvant RFA, SBRT, or no additional liver-directed modality. A feedforward, ML ensemble model provided a treatment recommendation on the basis of pairwise assessments evaluating each potential treatment option and estimated benefit in survival.RESULTSTwo hundred thirty-seven patients met inclusion criteria, of whom 54 (23%) and 49 (21%) received combination of TACE and SBRT or TACE and RFA, respectively. The ML model suggested a different consolidative modality in 32.7% of cases among patients who had previously received combination treatment. Patients treated in concordance with model recommendations had significant improvement in progression-free survival (hazard ratio 0.5; P = .007). The most important features for model prediction were cause of cirrhosis, stage of disease, and albumin-bilirubin grade (a measure of liver function).CONCLUSIONIn this proof-of-concept study, an ensemble ML model was able to provide treatment recommendations for HCC who had undergone prior TACE. Additional treatment in line with model recommendations was associated with significant improvement in progression-free survival, suggesting a potential benefit for ML-guided medical decision making. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JCO: Clinical Cancer Informatics Wolters Kluwer Health

Improving Adjuvant Liver-Directed Treatment Recommendations for Unresectable Hepatocellular Carcinoma: An Artificial Intelligence–Based Decision-Making Tool

Loading next page...
 
/lp/wolters-kluwer-health/improving-adjuvant-liver-directed-treatment-recommendations-for-c2AlafovMy
Publisher
Wolters Kluwer Health
Copyright
© 2022 by American Society of Clinical Oncology
eISSN
2473-4276
DOI
10.1200/cci.22.00024
Publisher site
See Article on Publisher Site

Abstract

PURPOSELiver-directed therapy after transarterial chemoembolization (TACE) can lead to improvement in survival for selected patients with unresectable hepatocellular carcinoma (HCC). However, there is uncertainty in the appropriate application and modality of therapy in current clinical practice guidelines. The aim of this study was to develop a proof-of-concept, machine learning (ML) model for treatment recommendation in patients previously treated with TACE and select patients who might benefit from additional treatment with combination stereotactic body radiotherapy (SBRT) or radiofrequency ablation (RFA).METHODSThis retrospective observational study was based on data from an urban, academic hospital system selecting for patients diagnosed with stage I-III HCC from January 1, 2008, to December 31, 2018, treated with TACE, followed by adjuvant RFA, SBRT, or no additional liver-directed modality. A feedforward, ML ensemble model provided a treatment recommendation on the basis of pairwise assessments evaluating each potential treatment option and estimated benefit in survival.RESULTSTwo hundred thirty-seven patients met inclusion criteria, of whom 54 (23%) and 49 (21%) received combination of TACE and SBRT or TACE and RFA, respectively. The ML model suggested a different consolidative modality in 32.7% of cases among patients who had previously received combination treatment. Patients treated in concordance with model recommendations had significant improvement in progression-free survival (hazard ratio 0.5; P = .007). The most important features for model prediction were cause of cirrhosis, stage of disease, and albumin-bilirubin grade (a measure of liver function).CONCLUSIONIn this proof-of-concept study, an ensemble ML model was able to provide treatment recommendations for HCC who had undergone prior TACE. Additional treatment in line with model recommendations was associated with significant improvement in progression-free survival, suggesting a potential benefit for ML-guided medical decision making.

Journal

JCO: Clinical Cancer InformaticsWolters Kluwer Health

Published: Jun 7, 2022

References