Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Automating Clinical Chart Review: An Open-Source Natural Language Processing Pipeline Developed on Free-Text Radiology Reports From Patients With Glioblastoma

Automating Clinical Chart Review: An Open-Source Natural Language Processing Pipeline Developed... PURPOSE: The aim of this study was to develop an open-source natural language processing (NLP) pipeline for text mining of medical information from clinical reports. We also aimed to provide insight into why certain variables or reports are more suitable for clinical text mining than others. MATERIALS AND METHODS: Various NLP models were developed to extract 15 radiologic characteristics from free-text radiology reports for patients with glioblastoma. Ten-fold cross-validation was used to optimize the hyperparameter settings and estimate model performance. We examined how model performance was associated with quantitative attributes of the radiologic characteristics and reports. RESULTS: In total, 562 unique brain magnetic resonance imaging reports were retrieved. NLP extracted 15 radiologic characteristics with high to excellent discrimination (area under the curve, 0.82 to 0.98) and accuracy (78.6% to 96.6%). Model performance was correlated with the inter-rater agreement of the manually provided labels ([rho] = 0.904; P < .001) but not with the frequency distribution of the variables of interest ([rho] = 0.179; P = .52). All variables labeled with a near perfect inter-rater agreement were classified with excellent performance (area under the curve > 0.95). Excellent performance could be achieved for variables with only 50 to 100 observations in the minority group and class imbalances up to a 9:1 ratio. Report-level classification accuracy was not associated with the number of words or the vocabulary size in the distinct text documents. CONCLUSION: This study provides an open-source NLP pipeline that allows for text mining of narratively written clinical reports. Small sample sizes and class imbalance should not be considered as absolute contraindications for text mining in clinical research. However, future studies should report measures of inter-rater agreement whenever ground truth is based on a consensus label and use this measure to identify clinical variables eligible for text mining. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JCO Clinical Cancer Informatics Wolters Kluwer Health

Automating Clinical Chart Review: An Open-Source Natural Language Processing Pipeline Developed on Free-Text Radiology Reports From Patients With Glioblastoma

Loading next page...
 
/lp/wolters-kluwer-health/automating-clinical-chart-review-an-open-source-natural-language-ZMZTOLWune

References (39)

Publisher
Wolters Kluwer Health
Copyright
(C) 2020 American Society of Clinical Oncology
ISSN
2473-4276
DOI
10.1200/CCI.19.00060
Publisher site
See Article on Publisher Site

Abstract

PURPOSE: The aim of this study was to develop an open-source natural language processing (NLP) pipeline for text mining of medical information from clinical reports. We also aimed to provide insight into why certain variables or reports are more suitable for clinical text mining than others. MATERIALS AND METHODS: Various NLP models were developed to extract 15 radiologic characteristics from free-text radiology reports for patients with glioblastoma. Ten-fold cross-validation was used to optimize the hyperparameter settings and estimate model performance. We examined how model performance was associated with quantitative attributes of the radiologic characteristics and reports. RESULTS: In total, 562 unique brain magnetic resonance imaging reports were retrieved. NLP extracted 15 radiologic characteristics with high to excellent discrimination (area under the curve, 0.82 to 0.98) and accuracy (78.6% to 96.6%). Model performance was correlated with the inter-rater agreement of the manually provided labels ([rho] = 0.904; P < .001) but not with the frequency distribution of the variables of interest ([rho] = 0.179; P = .52). All variables labeled with a near perfect inter-rater agreement were classified with excellent performance (area under the curve > 0.95). Excellent performance could be achieved for variables with only 50 to 100 observations in the minority group and class imbalances up to a 9:1 ratio. Report-level classification accuracy was not associated with the number of words or the vocabulary size in the distinct text documents. CONCLUSION: This study provides an open-source NLP pipeline that allows for text mining of narratively written clinical reports. Small sample sizes and class imbalance should not be considered as absolute contraindications for text mining in clinical research. However, future studies should report measures of inter-rater agreement whenever ground truth is based on a consensus label and use this measure to identify clinical variables eligible for text mining.

Journal

JCO Clinical Cancer InformaticsWolters Kluwer Health

Published: Jan 24, 2020

There are no references for this article.