Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Zinc Transfer Kinetics of Metallothioneins and Their Fragments with Apo‐carbonic Anhydrase

Zinc Transfer Kinetics of Metallothioneins and Their Fragments with Apo‐carbonic Anhydrase The zinc transfer reactions from Zn7‐MT‐I, Zn7‐MT‐II, Zn4‐α fragment (MT‐I) and Zn4,‐α fragment (MT‐II) to apo‐carbonic anhydrase have been studied. In each reaction, no more than one zinc ion per molecule is involved in metal transfer. Zn7‐MT‐I and Zn7‐MT‐II donate zinc to apo‐carbonic anhydrase and de novo constitute it at a comparable efficiency, while Zn7‐MT‐II exhibits a little faster rate. Surprisingly, Zinc is released from Zn4‐α fragment (MT‐II) with a much faster rate than from Zn4‐α fragment (MT‐I), whose rate is close to that of Zn7‐MT‐I. The reason for the difference is still unknown. Introducing complex compounds into this system may give rise to an effect on the reaction. The transfer from Zn7‐MT‐II in the presence of reduced glutathione shows little difference compare to the control, suggesting that the reduced glutathione is not involved in zinc transfer process. However, glutathione disulfide does accelerate this zinc transfer reaction remarkably, indicating that the oxidative factors contribute to zinc release from metallothioneins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chinese Journal of Chemistry Wiley

Zinc Transfer Kinetics of Metallothioneins and Their Fragments with Apo‐carbonic Anhydrase

Loading next page...
 
/lp/wiley/zinc-transfer-kinetics-of-metallothioneins-and-their-fragments-with-5jVYHtIo7N

References (29)

Publisher
Wiley
Copyright
Copyright © 2001 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1001-604X
eISSN
1614-7065
DOI
10.1002/cjoc.20010190506
Publisher site
See Article on Publisher Site

Abstract

The zinc transfer reactions from Zn7‐MT‐I, Zn7‐MT‐II, Zn4‐α fragment (MT‐I) and Zn4,‐α fragment (MT‐II) to apo‐carbonic anhydrase have been studied. In each reaction, no more than one zinc ion per molecule is involved in metal transfer. Zn7‐MT‐I and Zn7‐MT‐II donate zinc to apo‐carbonic anhydrase and de novo constitute it at a comparable efficiency, while Zn7‐MT‐II exhibits a little faster rate. Surprisingly, Zinc is released from Zn4‐α fragment (MT‐II) with a much faster rate than from Zn4‐α fragment (MT‐I), whose rate is close to that of Zn7‐MT‐I. The reason for the difference is still unknown. Introducing complex compounds into this system may give rise to an effect on the reaction. The transfer from Zn7‐MT‐II in the presence of reduced glutathione shows little difference compare to the control, suggesting that the reduced glutathione is not involved in zinc transfer process. However, glutathione disulfide does accelerate this zinc transfer reaction remarkably, indicating that the oxidative factors contribute to zinc release from metallothioneins.

Journal

Chinese Journal of ChemistryWiley

Published: May 1, 2001

Keywords: ; ; ;

There are no references for this article.