Access the full text.
Sign up today, get DeepDyve free for 14 days.
Perovskite based photovoltaic (PV) cells are unique in combining low open‐circuit voltage losses with a broad bandgap tunability. This makes them an ideal PV cell to recycle photons back into electrical power in a variety of illumination systems or light emitting devices. Here, advantage of these features is taken and wide bandgap (WBG) perovskite PV cells are incorporated in devices suitable for display illumination and demonstrate a high yield in stray light recycling back into electricity with up to a 37.5% power conversion efficiency. The specific device considered is a modified half‐cylinder photonic plate designed to emit diffused broadband polarized light using a nonabsorbing reflective polarizer based on a random dielectric layer distribution. It is experimentally demonstrated that light recycling using appropriately tuned WBG perovskite PV cells becomes very efficient when implemented in systems where the light is emitted from narrowband sources, even if the emission spans a broad wavelength range.
Advanced Energy Materials – Wiley
Published: Sep 1, 2022
Keywords: energy efficiency; light recycling; perovskites; polarization; wide bandgap
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.