Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Water Requirements for Castor Oil Crop ( Ricinus communis L.) in a Mediterranean Climate

Water Requirements for Castor Oil Crop ( Ricinus communis L.) in a Mediterranean Climate A field study was conducted to assess the effect of irrigation on castor (Ricinus communis L.) and to define the water requirements of the crop. Three irrigation regimes, corresponding to 0.0, 0.5 and 1.0 fractions (kd) of the evapotranspiration (ETm) in the area were compared, factorially combined with the varieties Pronto and Negus in 1995. In 1996 and 1997 one more irrigation treatment corresponding to 0.75 of the ETm was included, and Negus was replaced by HD912. Irrigation was found necessary for castor production since seed and oil yields obtained with irrigation were much higher compared to yields of rainfed plants, and also castor could not be competitive to winter cereals in rainfed areas. In 1995 seed yield increased to kd = 1.0, but the response of both varieties was curvilinear. In 1996 kd = 0.50 was enough for the maximum yield by both varieties, while in 1997 higher amounts of water were needed (kd = 1.00 and 0.75 for Pronto and HD912, respectively). The beneficial effect of irrigation was mainly due to the increased number of secondary racemes. Oil yield was mainly determined by seed yield. Thus, the aim of the growers should be to increase the seed yield. The suggested amount of water for the irrigation of castor in the Northern Greece is equal to 75 % of the evapotranspiration of the plant in the area. With this amount the yield is satisfactory and the management of water resources is doing in a rational way. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Agronomy and Crop Science Wiley

Water Requirements for Castor Oil Crop ( Ricinus communis L.) in a Mediterranean Climate

Loading next page...
 
/lp/wiley/water-requirements-for-castor-oil-crop-ricinus-communis-l-in-a-nfd2QFvE0L

References (2)

Publisher
Wiley
Copyright
Copyright © 2000 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0931-2250
eISSN
1439-037X
DOI
10.1046/j.1439-037x.2000.00357.x
Publisher site
See Article on Publisher Site

Abstract

A field study was conducted to assess the effect of irrigation on castor (Ricinus communis L.) and to define the water requirements of the crop. Three irrigation regimes, corresponding to 0.0, 0.5 and 1.0 fractions (kd) of the evapotranspiration (ETm) in the area were compared, factorially combined with the varieties Pronto and Negus in 1995. In 1996 and 1997 one more irrigation treatment corresponding to 0.75 of the ETm was included, and Negus was replaced by HD912. Irrigation was found necessary for castor production since seed and oil yields obtained with irrigation were much higher compared to yields of rainfed plants, and also castor could not be competitive to winter cereals in rainfed areas. In 1995 seed yield increased to kd = 1.0, but the response of both varieties was curvilinear. In 1996 kd = 0.50 was enough for the maximum yield by both varieties, while in 1997 higher amounts of water were needed (kd = 1.00 and 0.75 for Pronto and HD912, respectively). The beneficial effect of irrigation was mainly due to the increased number of secondary racemes. Oil yield was mainly determined by seed yield. Thus, the aim of the growers should be to increase the seed yield. The suggested amount of water for the irrigation of castor in the Northern Greece is equal to 75 % of the evapotranspiration of the plant in the area. With this amount the yield is satisfactory and the management of water resources is doing in a rational way.

Journal

Journal of Agronomy and Crop ScienceWiley

Published: Mar 1, 2000

There are no references for this article.