Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Visualizing Nucleation and Growth Process of Vanadium‐Supramolecular Nanoribbons Self‐Assembled by Rapid Cooling Method towards High‐Capacity Vanadium Nitride Anode Materials

Visualizing Nucleation and Growth Process of Vanadium‐Supramolecular Nanoribbons Self‐Assembled... The vanadium‐supramolecules and their derivatives are in high demand because of their huge potential applications in various fields, especially as electrodes for supercapacitors and batteries. However, the complex synthesis process is still a significant challenge. Furthermore, for these self‐assembly processes, the early reaction stages, intermediates, and details of reaction kinetics are still unknown. Here, an efficient approach of rapid cooling for large‐scale fabrication of melamine‐ammonium metavanadate (C3H6N6‐NH4VO3) supramolecular nanoribbons is reported, and the corresponding nucleation and growth process are visualized by using an in situ polarizing microscope. The thermally induced nucleation takes place within tens of seconds, and once the nucleus is formed, C3H6N6 and NH4VO3 begin to assemble into nanoribbons under thermal control and grow epitaxial around the already‐formed nuclei. The growth process is much slower than the nucleation, until all small molecules are consumed. Rapid heat induction (rapid cooling) and shear force induction (stirring) help to form a uniform and wider 2D sheet rather than fibers or ribbons. After pyrolysis, the vanadium‐supramolecules derived vanadium nitride (VN)/carbon nanoribbons present a mesoporous structure, which endows the VN/carbon with high capacitance of 266.3 F g−1 at 0.5 A g−1. In addition, the relationship between various structures and their properties is systematically investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Visualizing Nucleation and Growth Process of Vanadium‐Supramolecular Nanoribbons Self‐Assembled by Rapid Cooling Method towards High‐Capacity Vanadium Nitride Anode Materials

Loading next page...
 
/lp/wiley/visualizing-nucleation-and-growth-process-of-vanadium-supramolecular-pWC4JvUb1L

References (49)

Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202103158
Publisher site
See Article on Publisher Site

Abstract

The vanadium‐supramolecules and their derivatives are in high demand because of their huge potential applications in various fields, especially as electrodes for supercapacitors and batteries. However, the complex synthesis process is still a significant challenge. Furthermore, for these self‐assembly processes, the early reaction stages, intermediates, and details of reaction kinetics are still unknown. Here, an efficient approach of rapid cooling for large‐scale fabrication of melamine‐ammonium metavanadate (C3H6N6‐NH4VO3) supramolecular nanoribbons is reported, and the corresponding nucleation and growth process are visualized by using an in situ polarizing microscope. The thermally induced nucleation takes place within tens of seconds, and once the nucleus is formed, C3H6N6 and NH4VO3 begin to assemble into nanoribbons under thermal control and grow epitaxial around the already‐formed nuclei. The growth process is much slower than the nucleation, until all small molecules are consumed. Rapid heat induction (rapid cooling) and shear force induction (stirring) help to form a uniform and wider 2D sheet rather than fibers or ribbons. After pyrolysis, the vanadium‐supramolecules derived vanadium nitride (VN)/carbon nanoribbons present a mesoporous structure, which endows the VN/carbon with high capacitance of 266.3 F g−1 at 0.5 A g−1. In addition, the relationship between various structures and their properties is systematically investigated.

Journal

Advanced Energy MaterialsWiley

Published: Apr 1, 2022

Keywords: anode materials; large‐scale fabrication; metal supramolecules; nitride metals; nucleation process; supercapacitors

There are no references for this article.