Access the full text.
Sign up today, get DeepDyve free for 14 days.
The electrochemical N2 reduction reaction (NRR) offers a promising approach for sustainable NH3 production, and modulating the structural/electronic configurations of the catalyst materials with optimized electrocatalytic properties is pivotal for achieving high‐efficiency NRR electrocatalysis. Herein, vacancy and heterostructure engineering are rationally integrated to explore O‐vacancy‐rich MoO3‐x anchored on Ti3C2Tx‐MXene (MoO3‐x/MXene) as a highly active and selective NRR electrocatalyst, achieving an exceptional NRR activity with an NH3 yield of 95.8 µg h−1 mg−1 (−0.4 V) and a Faradaic efficiency of 22.3% (−0.3 V). A combination of in situ spectroscopy, molecular dynamics simulations and density functional theory computations is employed to unveil the synergistic effect of O‐vacancies and heterostructures for the NRR, which demonstrates that O‐vacancies on MoO3‐x serve as the active sites for N2 chemisorption and activation, while the MXene substrate can further regulate the O‐vacancy sites to break the scaling relation to effectively stabilize *N2/*N2H while destabilizing *NH2/*NH3, resulting in more optimized binding affinity of NRR intermediates toward reduced energy barriers and an enhanced NRR activity for MoO3‐x/MXene.
Advanced Energy Materials – Wiley
Published: Jan 1, 2022
Keywords: density functional theory; electrocatalytic nitrogen reduction; heterostructures; in situ spectroscopy; molecular dynamics simulations; O‐vacancies
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.