Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Unveiling the Synergy of O‐Vacancy and Heterostructure over MoO3‐x/MXene for N2 Electroreduction to NH3

Unveiling the Synergy of O‐Vacancy and Heterostructure over MoO3‐x/MXene for N2 Electroreduction... The electrochemical N2 reduction reaction (NRR) offers a promising approach for sustainable NH3 production, and modulating the structural/electronic configurations of the catalyst materials with optimized electrocatalytic properties is pivotal for achieving high‐efficiency NRR electrocatalysis. Herein, vacancy and heterostructure engineering are rationally integrated to explore O‐vacancy‐rich MoO3‐x anchored on Ti3C2Tx‐MXene (MoO3‐x/MXene) as a highly active and selective NRR electrocatalyst, achieving an exceptional NRR activity with an NH3 yield of 95.8 µg h−1 mg−1 (−0.4 V) and a Faradaic efficiency of 22.3% (−0.3 V). A combination of in situ spectroscopy, molecular dynamics simulations and density functional theory computations is employed to unveil the synergistic effect of O‐vacancies and heterostructures for the NRR, which demonstrates that O‐vacancies on MoO3‐x serve as the active sites for N2 chemisorption and activation, while the MXene substrate can further regulate the O‐vacancy sites to break the scaling relation to effectively stabilize *N2/*N2H while destabilizing *NH2/*NH3, resulting in more optimized binding affinity of NRR intermediates toward reduced energy barriers and an enhanced NRR activity for MoO3‐x/MXene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Unveiling the Synergy of O‐Vacancy and Heterostructure over MoO3‐x/MXene for N2 Electroreduction to NH3

Loading next page...
 
/lp/wiley/unveiling-the-synergy-of-o-vacancy-and-heterostructure-over-moo3-x-c0Yd8KW0m3
Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202103022
Publisher site
See Article on Publisher Site

Abstract

The electrochemical N2 reduction reaction (NRR) offers a promising approach for sustainable NH3 production, and modulating the structural/electronic configurations of the catalyst materials with optimized electrocatalytic properties is pivotal for achieving high‐efficiency NRR electrocatalysis. Herein, vacancy and heterostructure engineering are rationally integrated to explore O‐vacancy‐rich MoO3‐x anchored on Ti3C2Tx‐MXene (MoO3‐x/MXene) as a highly active and selective NRR electrocatalyst, achieving an exceptional NRR activity with an NH3 yield of 95.8 µg h−1 mg−1 (−0.4 V) and a Faradaic efficiency of 22.3% (−0.3 V). A combination of in situ spectroscopy, molecular dynamics simulations and density functional theory computations is employed to unveil the synergistic effect of O‐vacancies and heterostructures for the NRR, which demonstrates that O‐vacancies on MoO3‐x serve as the active sites for N2 chemisorption and activation, while the MXene substrate can further regulate the O‐vacancy sites to break the scaling relation to effectively stabilize *N2/*N2H while destabilizing *NH2/*NH3, resulting in more optimized binding affinity of NRR intermediates toward reduced energy barriers and an enhanced NRR activity for MoO3‐x/MXene.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2022

Keywords: density functional theory; electrocatalytic nitrogen reduction; heterostructures; in situ spectroscopy; molecular dynamics simulations; O‐vacancies

References