Access the full text.
Sign up today, get DeepDyve free for 14 days.
The time evolution of the current–voltage characteristic of planar heterojunction perovskite solar cell (PSC) is studied within an operating temperature range of 200–325 K. The photovoltaic (PV) performance of PSC is found to be influenced by five carrier transport pathways, which strongly depend on operating temperature and light illumination. At low temperature, a severe degradation of PV performance is presented but temporary. This is attributed to ion accumulation at the TiO2/CH3NH3PbI3 and hole transport material/CH3NH3PbI3 interfacial regions, as an origin of screening effect of built‐in field, evidenced by the low external quantum efficiency (EQE). By light illumination at open‐circuit, a steady PV performance will be reached and the stabilization time increases with decreasing temperature. The recovery of PV performance is attributed to ion diffusion in CH3NH3PbI3 layer in the absence of electric field. The EQE observations indicate that photogenerated carriers are separated and collected efficiently after a long time light illumination due to a reduction of the screening effect. At high temperature, because of the low ion density at interfacial regions, the PV performance shows a quick response to light. These findings may help understanding of the mechanism of temperature‐dependent photogenerated carrier transport in the PSC.
Advanced Energy Materials – Wiley
Published: Sep 1, 2016
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.