Access the full text.
Sign up today, get DeepDyve free for 14 days.
Closing both the carbon and nitrogen loops is a critical venture to support the establishment of the circular, net‐zero carbon economy. Although single atom catalysts (SACs) have gained interest for the electrochemical reduction reactions of both carbon dioxide (CO2RR) and nitrate (NO3RR), the structure–activity relationship for Cu SAC coordination for these reactions remains unclear and should be explored such that a fundamental understanding is developed. To this end, the role of the Cu coordination structure is investigated in dictating the activity and selectivity for the CO2RR and NO3RR. In agreement with the density functional theory calculations, it is revealed that Cu‐N4 sites exhibit higher intrinsic activity toward the CO2RR, whilst both Cu‐N4 and Cu‐N4−x‐Cx sites are active toward the NO3RR. Leveraging these findings, CO2RR and NO3RR are coupled for the formation of urea on Cu SACs, revealing the importance of *COOH binding as a critical parameter determining the catalytic activity for urea production. To the best of the authors’ knowledge, this is the first report employing SACs for electrochemical urea synthesis from CO2RR and NO3RR, which achieves a Faradaic efficiency of 28% for urea production with a current density of −27 mA cm–2 at −0.9 V versus the reversible hydrogen electrode.
Advanced Energy Materials – Wiley
Published: Aug 1, 2022
Keywords: CO 2 reduction; Cu single atom; power to X, urea
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.