Access the full text.
Sign up today, get DeepDyve free for 14 days.
The refunctionalization of a series of four well‐known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye‐sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC‐active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a stepwise approach. First, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet (1), Oxazine 170 (2), Nile Blue A (3), Oxazine 750 (4). These reveal structure‐property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D‐π‐A) and intramolecular charge transfer. Second, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I−/I3− and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co‐sensitizers for DSC applications.
Advanced Energy Materials – Wiley
Published: May 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.