Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis

Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis Fabrication of ultrathin 2D nonlayered nanomaterials remains challenging, yet significant due to the new promises in electrochemical functionalities. However, current strategies are largely restricted to intrinsically layered materials. Herein, a combinatorial self‐regulating acid etching and topotactic transformation strategy is developed to unprecedentedly prepare vertically stacked ultrathin 2D nonlayered nickel selenide nanosheets. Due to the inhibited hydrolyzation under acidic conditions, the self‐regulating acid etching results in ultrathin layered nickel hydroxides (two layers). The ultrathin structure allows limited epitaxial extension during selenization, i.e., the nondestructive topotactic transformation, enabling facile artificial engineering of hydroxide foundation frameworks into ultrathin nonlayered selenides. Consequently, the exquisite nonlayered nickel selenide affords high turnover frequencies, electrochemical surface areas, exchange current densities, and low Tafel slopes, as well as facilitating charge transfer toward both oxygen and hydrogen evolution reactions. Thus, the kinetically favorable bifunctional electrocatalyst delivers advanced and robust overall water splitting activities in alkaline intermediates. The integrated methodology may open up a new pathway for designing other highly active 2D nonlayered electrocatalysts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis

Loading next page...
 
/lp/wiley/topotactic-engineering-of-ultrathin-2d-nonlayered-nickel-selenides-for-1F4DA87ujF

References (47)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201702704
Publisher site
See Article on Publisher Site

Abstract

Fabrication of ultrathin 2D nonlayered nanomaterials remains challenging, yet significant due to the new promises in electrochemical functionalities. However, current strategies are largely restricted to intrinsically layered materials. Herein, a combinatorial self‐regulating acid etching and topotactic transformation strategy is developed to unprecedentedly prepare vertically stacked ultrathin 2D nonlayered nickel selenide nanosheets. Due to the inhibited hydrolyzation under acidic conditions, the self‐regulating acid etching results in ultrathin layered nickel hydroxides (two layers). The ultrathin structure allows limited epitaxial extension during selenization, i.e., the nondestructive topotactic transformation, enabling facile artificial engineering of hydroxide foundation frameworks into ultrathin nonlayered selenides. Consequently, the exquisite nonlayered nickel selenide affords high turnover frequencies, electrochemical surface areas, exchange current densities, and low Tafel slopes, as well as facilitating charge transfer toward both oxygen and hydrogen evolution reactions. Thus, the kinetically favorable bifunctional electrocatalyst delivers advanced and robust overall water splitting activities in alkaline intermediates. The integrated methodology may open up a new pathway for designing other highly active 2D nonlayered electrocatalysts.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

There are no references for this article.