Access the full text.
Sign up today, get DeepDyve free for 14 days.
Transparent photovoltaics that harvest ultraviolet photons are promising point‐of‐use power sources for lower power applications, such as electrochromic windows that regulate the flow of visible and infrared photons for lighting and temperature regulation. Organic photovoltaic cells employing contorted hexabenzocoronene (cHBC) and its derivatives as chromophores have shown promise for transparent solar cells due to their high open‐circuit voltages, large‐area scalability, and high photoactive layer transparency. Here, the operational stability of such devices is investigated and it is found that the solar cell active layers that include peripherally halogenated chromophores undergo rapid morphological degradation during operation, while control cells employing cHBC and other non‐halogenated derivatives as donors with archetype C70 as an acceptor are highly stable. This study suggests halogenation of chromophores can play an outsized role in determining the operational stability of devices comprising them, which should be considered during the molecular design process.
Advanced Energy Materials – Wiley
Published: Apr 1, 2021
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.