Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synergetic Regulation of Oriented Crystallization and Interfacial Passivation Enables 19.1% Efficient Wide‐Bandgap Perovskite Solar Cells

Synergetic Regulation of Oriented Crystallization and Interfacial Passivation Enables 19.1%... Wide‐bandgap (WBG) perovskite solar cells (PSCs) suffer from severe voltage loss, which significantly limits the enhancement of photovoltaic performance. Here, 4‐fluoro‐phenylethylammonium iodide (FPEAI) is used as a dual‐functional agent for oriented crystallization and comprehensive passivation of WBG PSCs. The additive of FPEAI promotes crystals to grow along with the (100) orientation with improved crystallinity and to spontaneously form Ruddlesden–Popper 2D perovskite on the grain boundary and surface of 3D crystals, which can passivate defects and protect the perovskite film from moisture erosion as well as suppressed ion migration. In addition, the 2D/3D heterostructure induces a matched energy‐level alignment, which mitigates the detrimental interfacial charge recombination at the interface of the 3D perovskite and hole transport layer. Consequently, the modified WBG PSCs exhibit an improved open‐circuit voltage to 1.3 V and a fill factor of 77.8%, leading to a remarkable power conversion efficiency of 19.1% with negligible hysteresis. Furthermore, the WBG PSCs maintain 85% of the original efficiency after 1000 h in air, demonstrating outstanding humidity stability. This work indicates that FPEAI can be used as a dual‐functional agent to significantly enhance the efficiency of WBG PSCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Synergetic Regulation of Oriented Crystallization and Interfacial Passivation Enables 19.1% Efficient Wide‐Bandgap Perovskite Solar Cells

Loading next page...
 
/lp/wiley/synergetic-regulation-of-oriented-crystallization-and-interfacial-xr6PzGbOG0
Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202201509
Publisher site
See Article on Publisher Site

Abstract

Wide‐bandgap (WBG) perovskite solar cells (PSCs) suffer from severe voltage loss, which significantly limits the enhancement of photovoltaic performance. Here, 4‐fluoro‐phenylethylammonium iodide (FPEAI) is used as a dual‐functional agent for oriented crystallization and comprehensive passivation of WBG PSCs. The additive of FPEAI promotes crystals to grow along with the (100) orientation with improved crystallinity and to spontaneously form Ruddlesden–Popper 2D perovskite on the grain boundary and surface of 3D crystals, which can passivate defects and protect the perovskite film from moisture erosion as well as suppressed ion migration. In addition, the 2D/3D heterostructure induces a matched energy‐level alignment, which mitigates the detrimental interfacial charge recombination at the interface of the 3D perovskite and hole transport layer. Consequently, the modified WBG PSCs exhibit an improved open‐circuit voltage to 1.3 V and a fill factor of 77.8%, leading to a remarkable power conversion efficiency of 19.1% with negligible hysteresis. Furthermore, the WBG PSCs maintain 85% of the original efficiency after 1000 h in air, demonstrating outstanding humidity stability. This work indicates that FPEAI can be used as a dual‐functional agent to significantly enhance the efficiency of WBG PSCs.

Journal

Advanced Energy MaterialsWiley

Published: Sep 1, 2022

Keywords: interfacial passivation; oriented crystallization; stability; wide‐bandgap perovskites

References