Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Side‐Chain Engineering for Fine‐Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar Cells

Side‐Chain Engineering for Fine‐Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar... A series of four polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and 5,6‐difluoro‐4,7‐diiodobenzo[c][1,2,5]thiadiazole (2FBT), PBDT2FBT, PBDT2FBT‐O, PBDT2FBT‐T, and PBDT2FBT‐T‐O, are synthesized with their four different side chains, alkyl‐, alkoxy‐, alkylthienyl‐, and alkoxythienyl. Experimental results and theoretical calculations show that the molecular tuning of the side chains simultaneously influences the solubilities, energy levels, light absorption, surface tension, and intermolecular packing of the resulting polymers by altering their molecular coplanarity and electron affinity. The polymer solar cell (PSC) based on a blend of PBDT2FBT‐T/[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits the best photovoltaic performance of the four PBDT2FBT derivatives, with a high open‐circuit voltage of 0.98 V and a power conversion efficiency of 6.37%, without any processing additives, post‐treatments, or optical spacers. Furthermore, PBDT2FBT‐T‐O, which has a novel side chain alkoxythienyl, showed promising properties with the most red‐shifted absorption and strong intermolecular packing property in solid state. This study provides insight into molecular design and fabrication strategies via structural tuning of the side chains of conjugated polymers for achieving highly efficient PSCs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Side‐Chain Engineering for Fine‐Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar Cells

Loading next page...
 
/lp/wiley/side-chain-engineering-for-fine-tuning-of-energy-levels-and-nanoscale-w7Sg6WXZVw

References (56)

Publisher
Wiley
Copyright
Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201400087
Publisher site
See Article on Publisher Site

Abstract

A series of four polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and 5,6‐difluoro‐4,7‐diiodobenzo[c][1,2,5]thiadiazole (2FBT), PBDT2FBT, PBDT2FBT‐O, PBDT2FBT‐T, and PBDT2FBT‐T‐O, are synthesized with their four different side chains, alkyl‐, alkoxy‐, alkylthienyl‐, and alkoxythienyl. Experimental results and theoretical calculations show that the molecular tuning of the side chains simultaneously influences the solubilities, energy levels, light absorption, surface tension, and intermolecular packing of the resulting polymers by altering their molecular coplanarity and electron affinity. The polymer solar cell (PSC) based on a blend of PBDT2FBT‐T/[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits the best photovoltaic performance of the four PBDT2FBT derivatives, with a high open‐circuit voltage of 0.98 V and a power conversion efficiency of 6.37%, without any processing additives, post‐treatments, or optical spacers. Furthermore, PBDT2FBT‐T‐O, which has a novel side chain alkoxythienyl, showed promising properties with the most red‐shifted absorption and strong intermolecular packing property in solid state. This study provides insight into molecular design and fabrication strategies via structural tuning of the side chains of conjugated polymers for achieving highly efficient PSCs.

Journal

Advanced Energy MaterialsWiley

Published: Jul 1, 2014

Keywords: ; ; ; ;

There are no references for this article.