Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Securinega Alkaloids: Complex Structures, Potent Bioactivities, and Efficient Total Syntheses

Securinega Alkaloids: Complex Structures, Potent Bioactivities, and Efficient Total Syntheses The Securinega alkaloids feature a compact tetracyclic structural framework and can be divided into four subclasses characterized by either a bridged [2.2.2]‐ or a [3.2.1]‐bicyclic core with two homologous series in each subclass. In the last two decades, many innovative strategies to chemically access the Securinega alkaloids have been developed. This Focus Review discusses the selected structures and syntheses of representative members of the Securinega alkaloids. Ring‐closing metathesis has enabled the syntheses of securinine and norsecurinine, and different cycloaddition approaches were key to the syntheses of nirurine and virosaines A and B. Virosine A was accessed through a Vilsmeier–Haack/Mannich reaction cascade. A bio‐inspired vinylogous Mannich reaction has enabled the synthesis of allosecurinine and this strategy has been extended by an intramolecular 1,6‐addition to obtain bubbialidine and secu′amamine E. A rearrangement process of the latter two alkaloids has furnished allonorsecurinine and allosecurinine, respectively. Finally, an expanded model for the biogenesis of the Securinega alkaloid subclasses is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Asian Journal of Organic Chemistry Wiley

Securinega Alkaloids: Complex Structures, Potent Bioactivities, and Efficient Total Syntheses

Loading next page...
 
/lp/wiley/securinega-alkaloids-complex-structures-potent-bioactivities-and-c0MA0UAnRG

References (91)

Publisher
Wiley
Copyright
© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
2193-5807
eISSN
2193-5815
DOI
10.1002/ajoc.201700142
Publisher site
See Article on Publisher Site

Abstract

The Securinega alkaloids feature a compact tetracyclic structural framework and can be divided into four subclasses characterized by either a bridged [2.2.2]‐ or a [3.2.1]‐bicyclic core with two homologous series in each subclass. In the last two decades, many innovative strategies to chemically access the Securinega alkaloids have been developed. This Focus Review discusses the selected structures and syntheses of representative members of the Securinega alkaloids. Ring‐closing metathesis has enabled the syntheses of securinine and norsecurinine, and different cycloaddition approaches were key to the syntheses of nirurine and virosaines A and B. Virosine A was accessed through a Vilsmeier–Haack/Mannich reaction cascade. A bio‐inspired vinylogous Mannich reaction has enabled the synthesis of allosecurinine and this strategy has been extended by an intramolecular 1,6‐addition to obtain bubbialidine and secu′amamine E. A rearrangement process of the latter two alkaloids has furnished allonorsecurinine and allosecurinine, respectively. Finally, an expanded model for the biogenesis of the Securinega alkaloid subclasses is discussed.

Journal

Asian Journal of Organic ChemistryWiley

Published: Sep 1, 2017

Keywords: ; ; ; ;

There are no references for this article.