Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Rest boosts the long‐term retention of spatial associative and temporal order information

Rest boosts the long‐term retention of spatial associative and temporal order information ABSTRACT People retain more new verbal episodic information for at least 7 days if they rest for a few minutes after learning than if they attend to new information. It is hypothesized that rest allows for superior consolidation of new memories. In rodents, rest periods promote hippocampal replay of a recently travelled route, and this replay is thought to be critical for memory consolidation and subsequent spatial navigation. If rest boosts human memory by promoting hippocampal replay/consolidation, then the beneficial effect of rest should extend to complex (hippocampal) memory tasks, for example, tasks probing associations and sequences. We investigated this question via a virtual reality route memory task. Healthy young participants learned two routes to a 100% criterion. One route was followed by a 10‐min rest and the other by a 10‐min spot the difference game. For each learned route, participants performed four delayed spatial memory tests probing: (i) associative (landmark‐direction) memory, (ii) cognitive map formation, (iii) temporal (landmark) order memory, and (iv) route memory. Tests were repeated after 7 days to determine any long‐term effects. No effect of rest was detected in the route memory or cognitive map tests, most likely due to ceiling and floor effects, respectively. Rest did, however, boost retention in the associative memory and temporal order memory tests, and this boost remained for at least 7 days. We therefore demonstrate that the benefit of rest extends to (spatial) associative and temporal order memory in humans. We hypothesise that rest allows superior consolidation/hippocampal replay of novel information pertaining to a recently learned route, thus boosting new memories over the long term. © 2015 Wiley Periodicals, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hippocampus Wiley

Rest boosts the long‐term retention of spatial associative and temporal order information

Loading next page...
 
/lp/wiley/rest-boosts-the-long-term-retention-of-spatial-associative-and-WkplvQH00e

References (45)

Publisher
Wiley
Copyright
© 2015 Wiley Periodicals, Inc.
ISSN
1050-9631
eISSN
1098-1063
DOI
10.1002/hipo.22424
pmid
25620400
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT People retain more new verbal episodic information for at least 7 days if they rest for a few minutes after learning than if they attend to new information. It is hypothesized that rest allows for superior consolidation of new memories. In rodents, rest periods promote hippocampal replay of a recently travelled route, and this replay is thought to be critical for memory consolidation and subsequent spatial navigation. If rest boosts human memory by promoting hippocampal replay/consolidation, then the beneficial effect of rest should extend to complex (hippocampal) memory tasks, for example, tasks probing associations and sequences. We investigated this question via a virtual reality route memory task. Healthy young participants learned two routes to a 100% criterion. One route was followed by a 10‐min rest and the other by a 10‐min spot the difference game. For each learned route, participants performed four delayed spatial memory tests probing: (i) associative (landmark‐direction) memory, (ii) cognitive map formation, (iii) temporal (landmark) order memory, and (iv) route memory. Tests were repeated after 7 days to determine any long‐term effects. No effect of rest was detected in the route memory or cognitive map tests, most likely due to ceiling and floor effects, respectively. Rest did, however, boost retention in the associative memory and temporal order memory tests, and this boost remained for at least 7 days. We therefore demonstrate that the benefit of rest extends to (spatial) associative and temporal order memory in humans. We hypothesise that rest allows superior consolidation/hippocampal replay of novel information pertaining to a recently learned route, thus boosting new memories over the long term. © 2015 Wiley Periodicals, Inc.

Journal

HippocampusWiley

Published: Sep 1, 2015

There are no references for this article.