Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reactivation with a simple exposure to the experimental environment is sufficient to induce reconsolidation requiring protein synthesis in the hippocampal CA3 region in mice

Reactivation with a simple exposure to the experimental environment is sufficient to induce... Our understanding of the memory reconsolidation process is at an earlier stage than that of consolidation. For example, it is unclear if, as for memory consolidation, reconsolidation of a memory trace necessitates protein synthesis. In fact, conflicting results appear in the literature and this discrepancy may be due to differences in the experimental reactivation procedure. Here, we addressed the question of whether protein synthesis in the CA3 hippocampal region is crucial in memory consolidation and reconsolidation of allocentric knowledge after reactivation in different experimental conditions in the Morris water maze. We showed (1) that an injection of the protein synthesis inhibitor anisomycin in the CA3 region during consolidation or after a single reactivation trial disrupted performance and (2) that protein synthesis is required even after a simple contextual reactivation without any learning trial and independently of the presence of the reinforcement. This work demonstrates that a simple exposure to the spatial environment is sufficient to reactivate the memory trace, to make it labile, and that reconsolidation of this trace requires de novo protein synthesis. © 2007 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hippocampus Wiley

Reactivation with a simple exposure to the experimental environment is sufficient to induce reconsolidation requiring protein synthesis in the hippocampal CA3 region in mice

Loading next page...
 
/lp/wiley/reactivation-with-a-simple-exposure-to-the-experimental-environment-is-1nB5YLdIXz

References (59)

Publisher
Wiley
Copyright
Copyright © 2007 Wiley Subscription Services
ISSN
1050-9631
eISSN
1098-1063
DOI
10.1002/hipo.20256
pmid
17294462
Publisher site
See Article on Publisher Site

Abstract

Our understanding of the memory reconsolidation process is at an earlier stage than that of consolidation. For example, it is unclear if, as for memory consolidation, reconsolidation of a memory trace necessitates protein synthesis. In fact, conflicting results appear in the literature and this discrepancy may be due to differences in the experimental reactivation procedure. Here, we addressed the question of whether protein synthesis in the CA3 hippocampal region is crucial in memory consolidation and reconsolidation of allocentric knowledge after reactivation in different experimental conditions in the Morris water maze. We showed (1) that an injection of the protein synthesis inhibitor anisomycin in the CA3 region during consolidation or after a single reactivation trial disrupted performance and (2) that protein synthesis is required even after a simple contextual reactivation without any learning trial and independently of the presence of the reinforcement. This work demonstrates that a simple exposure to the spatial environment is sufficient to reactivate the memory trace, to make it labile, and that reconsolidation of this trace requires de novo protein synthesis. © 2007 Wiley‐Liss, Inc.

Journal

HippocampusWiley

Published: Jan 1, 2007

Keywords: ; ; ; ;

There are no references for this article.