Access the full text.
Sign up today, get DeepDyve free for 14 days.
Continuous powering of wearable electronics and personalized biomonitoring systems remains a great challenge. One promising solution is the use of thermoelectric generators (TEGs) that convert body heat to electricity. These energy harvesters must conform to curved surfaces and minimize thermal barriers to maintain efficiency while still exhibiting durability under large deformations. Here, highly efficient, stretchable thermoelectric generators made of inorganic semiconductors and printed multifunctional soft matter are introduced. Liquid metal elastomer composites with tailored microstructures are printed as highly conductive thermal interface materials and stretchable interconnects. Additionally, elastomer composites with hollow microspheres are formulated to print a deformable and lightweight thermal insulator within the device. These stretchable thermoelectric wearables show an excellent performance by generating an open‐circuit voltage of 392 mV and a power density of ≈650 µW cm−2 at ∆T = 60 °C and withstanding more than 15 000 stretching cycles at 30% strain. Furthermore, the additive manufacturing process is leveraged by direct writing of the TEGs on textiles to demonstrate their seamless integration and by 3D printing of stretchable heatsinks to maintain a large temperature gradient across the device and to study the effect of convective heat transfer on device performance.
Advanced Energy Materials – Wiley
Published: Sep 1, 2022
Keywords: 3D printing; liquid metals; stretchable electronics; thermal conductivity; thermal management; thermoelectrics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.