Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Porous Electrode Modeling and its Applications to Li‐Ion Batteries

Porous Electrode Modeling and its Applications to Li‐Ion Batteries Battery modeling has become increasingly important with the intensive development of Li‐ion batteries (LIBs). The porous electrode model, relating battery performances to the internal physical and (electro)chemical processes, is one of the most adopted models in scientific research and engineering fields. Since Newman and coworkers’ first implementation in the 1990s, the porous electrode model has kept its general form. Soon after that, many publications have focused on the applications to LIBs. In this review, the applications of the porous electrode model to LIBs are systematically summarized and discussed. With this model, various internal battery properties have been studied, such as Li+ concentration and electric potential in the electrolyte and electrodes, reaction rate distribution, overpotential, and impedance. When coupled with thermal, mechanical, and aging models, the porous electrode model can simulate the temperature and stress distribution inside batteries and predict degradation during battery operation. With the help of state observers, the porous electrode model can monitor various battery states in real‐time for battery management systems. Even though the porous electrode models have multiple advantages, some challenges and limitations still have to be addressed. The present review also gives suggestions to overcome these limitations in future research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Porous Electrode Modeling and its Applications to Li‐Ion Batteries

Loading next page...
 
/lp/wiley/porous-electrode-modeling-and-its-applications-to-li-ion-batteries-kP30JncKVc
Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202201506
Publisher site
See Article on Publisher Site

Abstract

Battery modeling has become increasingly important with the intensive development of Li‐ion batteries (LIBs). The porous electrode model, relating battery performances to the internal physical and (electro)chemical processes, is one of the most adopted models in scientific research and engineering fields. Since Newman and coworkers’ first implementation in the 1990s, the porous electrode model has kept its general form. Soon after that, many publications have focused on the applications to LIBs. In this review, the applications of the porous electrode model to LIBs are systematically summarized and discussed. With this model, various internal battery properties have been studied, such as Li+ concentration and electric potential in the electrolyte and electrodes, reaction rate distribution, overpotential, and impedance. When coupled with thermal, mechanical, and aging models, the porous electrode model can simulate the temperature and stress distribution inside batteries and predict degradation during battery operation. With the help of state observers, the porous electrode model can monitor various battery states in real‐time for battery management systems. Even though the porous electrode models have multiple advantages, some challenges and limitations still have to be addressed. The present review also gives suggestions to overcome these limitations in future research.

Journal

Advanced Energy MaterialsWiley

Published: Aug 1, 2022

Keywords: Li‐ion battery; performance modeling; porous electrode model

References