Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Polymer‐in‐“Quasi‐Ionic Liquid” Electrolytes for High‐Voltage Lithium Metal Batteries

Polymer‐in‐“Quasi‐Ionic Liquid” Electrolytes for High‐Voltage Lithium Metal Batteries Due to the limited oxidation stability (<4 V) of ether oxygen in its polymer structure, polyethylene oxide (PEO)‐based polymer electrolytes are not compatible with high‐voltage (>4 V) cathodes, thus hinder further increases in the energy density of lithium (Li) metal batteries (LMBs). Here, a new type of polymer‐in‐“quasi‐ionic liquid” electrolyte is designed, which reduces the electron density on ethereal oxygens in PEO and ether solvent molecules, induces the formation of stable interfacial layers on both surfaces of the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and the Li metal anode in Li||NMC batteries, and results in a capacity retention of 88.4%, 86.7%, and 79.2% after 300 cycles with a charge cutoff voltage of 4.2, 4.3, and 4.4 V for the LMBs, respectively. Therefore, the use of “quasi‐ionic liquids” is a promising approach to design new polymer electrolytes for high‐voltage and high‐specific‐energy LMBs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Polymer‐in‐“Quasi‐Ionic Liquid” Electrolytes for High‐Voltage Lithium Metal Batteries

Loading next page...
 
/lp/wiley/polymer-in-quasi-ionic-liquid-electrolytes-for-high-voltage-lithium-jZecFiu3Xx

References (43)

Publisher
Wiley
Copyright
© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201902108
Publisher site
See Article on Publisher Site

Abstract

Due to the limited oxidation stability (<4 V) of ether oxygen in its polymer structure, polyethylene oxide (PEO)‐based polymer electrolytes are not compatible with high‐voltage (>4 V) cathodes, thus hinder further increases in the energy density of lithium (Li) metal batteries (LMBs). Here, a new type of polymer‐in‐“quasi‐ionic liquid” electrolyte is designed, which reduces the electron density on ethereal oxygens in PEO and ether solvent molecules, induces the formation of stable interfacial layers on both surfaces of the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and the Li metal anode in Li||NMC batteries, and results in a capacity retention of 88.4%, 86.7%, and 79.2% after 300 cycles with a charge cutoff voltage of 4.2, 4.3, and 4.4 V for the LMBs, respectively. Therefore, the use of “quasi‐ionic liquids” is a promising approach to design new polymer electrolytes for high‐voltage and high‐specific‐energy LMBs.

Journal

Advanced Energy MaterialsWiley

Published: Nov 1, 2019

Keywords: ; ; ;

There are no references for this article.