Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Physiological and Growth Responses of Sugarcane Genotypes to Nitrogen Rate on a Sand Soil

Physiological and Growth Responses of Sugarcane Genotypes to Nitrogen Rate on a Sand Soil Yields of sugarcane (a complex hybrid of Saccharum spp.) in FL, USA, are lower on sand soils than on organic (muck) soils. Nitrogen (N) supply may limit sugarcane growth and yields on these sand soils. A 2‐year pot study was conducted to determine sugarcane genotypic variation in response to N rate on a sand soil. Treatments included four N rates (0, 75, 150 and 225 kg ha−1) and three sugarcane genotypes (CP 80‐1743, CP 01‐2390 and TCP 87‐3388). Nitrogen fertilizer was equally split and applied at about 55 and 125 days after planting (DAP) for each treatment. During the experiment, the number of nodes and length of the primary stalks and tillers were recorded. Leaf relative chlorophyll (soil plant analysis development (SPAD)) and net photosynthetic rate (Pn) were measured biweekly. All plants were harvested at 183 DAP to measure green leaf area (GLA), shoot biomass accumulation and partitioning, and fertilizer N use efficiency (NUE). Genotypes differed significantly in leaf SPAD, Pn, GLA, and shoot biomass accumulation and partitioning. CP 01‐2390 had the highest leaf Pn and shoot biomass, and CP 80‐1743 had the lowest GLA, shoot biomass and NUE among genotypes. Nitrogen rate affected leaf SPAD, GLA, shoot biomass and NUE, but had much less effect on leaf Pn. Green leaf area and biomass increased with increasing N rates. Our results suggest that a two‐pronged approach, selection of genotypes with high NUE while working to optimize N rates and delivery can improve sugarcane yields on sand soils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Agronomy and Crop Science Wiley

Physiological and Growth Responses of Sugarcane Genotypes to Nitrogen Rate on a Sand Soil

Loading next page...
 
/lp/wiley/physiological-and-growth-responses-of-sugarcane-genotypes-to-nitrogen-yQfTplE3IQ

References (32)

Publisher
Wiley
Copyright
Copyright © 2014 Blackwell Verlag GmbH
ISSN
0931-2250
eISSN
1439-037X
DOI
10.1111/jac.12084
Publisher site
See Article on Publisher Site

Abstract

Yields of sugarcane (a complex hybrid of Saccharum spp.) in FL, USA, are lower on sand soils than on organic (muck) soils. Nitrogen (N) supply may limit sugarcane growth and yields on these sand soils. A 2‐year pot study was conducted to determine sugarcane genotypic variation in response to N rate on a sand soil. Treatments included four N rates (0, 75, 150 and 225 kg ha−1) and three sugarcane genotypes (CP 80‐1743, CP 01‐2390 and TCP 87‐3388). Nitrogen fertilizer was equally split and applied at about 55 and 125 days after planting (DAP) for each treatment. During the experiment, the number of nodes and length of the primary stalks and tillers were recorded. Leaf relative chlorophyll (soil plant analysis development (SPAD)) and net photosynthetic rate (Pn) were measured biweekly. All plants were harvested at 183 DAP to measure green leaf area (GLA), shoot biomass accumulation and partitioning, and fertilizer N use efficiency (NUE). Genotypes differed significantly in leaf SPAD, Pn, GLA, and shoot biomass accumulation and partitioning. CP 01‐2390 had the highest leaf Pn and shoot biomass, and CP 80‐1743 had the lowest GLA, shoot biomass and NUE among genotypes. Nitrogen rate affected leaf SPAD, GLA, shoot biomass and NUE, but had much less effect on leaf Pn. Green leaf area and biomass increased with increasing N rates. Our results suggest that a two‐pronged approach, selection of genotypes with high NUE while working to optimize N rates and delivery can improve sugarcane yields on sand soils.

Journal

Journal of Agronomy and Crop ScienceWiley

Published: Jan 1, 2014

Keywords: ; ; ; ; ;

There are no references for this article.