Access the full text.
Sign up today, get DeepDyve free for 14 days.
Morphology plays a vital role on the performance of organic photovoltaics. However, our understanding of the morphology‐performance relationships for organic photovoltaics remains lacking. Specifically, it is still an open question why some bulk‐heterojunction blends exhibit electric field dependent J–V curves, while others do not. Through detailed fs‐μs transient absorption spectroscopy and morphology studies on the representative bulk‐heterojunction type small molecule (SM) donor system, a picture of different J–V behaviors from morphology aspects and excited dynamics is revealed. Our findings reveal that amorphous morphology in the lack of percolated pathways leads to the formation of strongly bound charge transfer states (CTSs), which accounts for about one third of the photoexcited species. Therefore, field‐dependent J–V curves are obtained as these CTSs mainly undergo geminate recombination or function as interfacial traps for nongeminate recombination. On the other hand, the CTSs are totally suppressed after post‐treatment owning to the formation of bicontinuous morphology, which results in very high efficiencies from exciton generation, diffusion, dissociation to charge extraction, thus contributes to field‐independent J–V characteristics. The insights gained in this work provide the effective guidelines to further optimize the performance of bulk‐heterojunction type SM‐organic photovoltaics through judicious morphology control and engineering.
Advanced Energy Materials – Wiley
Published: Nov 1, 2016
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.