Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Microfabricated Pseudocapacitors Using Ni(OH) 2 Electrodes Exhibit Remarkable Volumetric Capacitance and Energy Density

Microfabricated Pseudocapacitors Using Ni(OH) 2 Electrodes Exhibit Remarkable Volumetric... Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top‐down photolithographic process and bottom‐up chemical synthesis is employed to fabricate the micro‐pseudocapacitors (μ‐pseudocapacitors). The resulting Ni(OH)2‐based devices show several excellent characteristics including high‐rate redox activity up to 500 V s–1 and an areal cell capacitance of 16 mF cm–2 corresponding to a volumetric stack capacitance of 325 F cm–3. This volumetric capacitance is two‐fold higher than carbon and metal oxide based μ‐supercapacitors with interdigitated electrode architecture. Furthermore, these μ‐pseudocapacitors show a maximum energy density of 21 mWh cm–3, which is superior to the Li‐based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ‐pseudocapacitors are shown to be capable of powering a light‐emitting diode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Microfabricated Pseudocapacitors Using Ni(OH) 2 Electrodes Exhibit Remarkable Volumetric Capacitance and Energy Density

Loading next page...
 
/lp/wiley/microfabricated-pseudocapacitors-using-ni-oh-2-electrodes-exhibit-4lkClYT52Y

References (41)

Publisher
Wiley
Copyright
Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201401303
Publisher site
See Article on Publisher Site

Abstract

Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top‐down photolithographic process and bottom‐up chemical synthesis is employed to fabricate the micro‐pseudocapacitors (μ‐pseudocapacitors). The resulting Ni(OH)2‐based devices show several excellent characteristics including high‐rate redox activity up to 500 V s–1 and an areal cell capacitance of 16 mF cm–2 corresponding to a volumetric stack capacitance of 325 F cm–3. This volumetric capacitance is two‐fold higher than carbon and metal oxide based μ‐supercapacitors with interdigitated electrode architecture. Furthermore, these μ‐pseudocapacitors show a maximum energy density of 21 mWh cm–3, which is superior to the Li‐based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ‐pseudocapacitors are shown to be capable of powering a light‐emitting diode.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2015

There are no references for this article.