Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Low Band Gap Benzimidazole COF Supported Ni3N as Highly Active OER Catalyst

Low Band Gap Benzimidazole COF Supported Ni3N as Highly Active OER Catalyst Covalent organic frameworks (COFs) have structures and morphologies closely resembling graphenes, whose modular construction permits atomic‐level manipulations. This, combined with their porous structure, makes them excellent catalyst supports. Here, the high electrocatalytic activity of a composite, formed by supporting Ni3N nanoparticles on a benzimidazole COF, for oxygen evolution reaction is shown. The composite oxidizes alkaline water with a near‐record low overpotential of 230 mV @ 10 mA cm−2 (η 10). This high activity is attributed to the ability of the COF to confine the Ni3N nanoparticles to size regimes otherwise difficult to obtain and to its low band gap character (1.49 eV) arising from the synergy between the conducting Ni3N nanoparticles and the π‐conjugated COF. The COF itself, as a metal‐free self‐standing framework, has an oxygen evolution reaction activity with η 10 of 400 mV. The periodic structure of the COF makes it serve as a matrix to disperse the catalytically active Ni3N nanoparticles favoring their high accessibility and thereby good charge‐transport within the composite. This is evident from the amount of O2 evolved (230 mmol h−1 g−1), which, to the best of our knowledge, is the highest reported. The work reveals the emergence of COF as supports for electrocatalysts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Loading next page...
 
/lp/wiley/low-band-gap-benzimidazole-cof-supported-ni3n-as-highly-active-oer-pVR65zwCsf

References (52)

Publisher
Wiley
Copyright
Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201601189
Publisher site
See Article on Publisher Site

Abstract

Covalent organic frameworks (COFs) have structures and morphologies closely resembling graphenes, whose modular construction permits atomic‐level manipulations. This, combined with their porous structure, makes them excellent catalyst supports. Here, the high electrocatalytic activity of a composite, formed by supporting Ni3N nanoparticles on a benzimidazole COF, for oxygen evolution reaction is shown. The composite oxidizes alkaline water with a near‐record low overpotential of 230 mV @ 10 mA cm−2 (η 10). This high activity is attributed to the ability of the COF to confine the Ni3N nanoparticles to size regimes otherwise difficult to obtain and to its low band gap character (1.49 eV) arising from the synergy between the conducting Ni3N nanoparticles and the π‐conjugated COF. The COF itself, as a metal‐free self‐standing framework, has an oxygen evolution reaction activity with η 10 of 400 mV. The periodic structure of the COF makes it serve as a matrix to disperse the catalytically active Ni3N nanoparticles favoring their high accessibility and thereby good charge‐transport within the composite. This is evident from the amount of O2 evolved (230 mmol h−1 g−1), which, to the best of our knowledge, is the highest reported. The work reveals the emergence of COF as supports for electrocatalysts.

Journal

Advanced Energy MaterialsWiley

Published: Dec 1, 2016

Keywords: ; ; ; ;

There are no references for this article.