Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Long‐Lifetime Triboelectric Nanogenerator Operated in Conjunction Modes and Low Crest Factor

Long‐Lifetime Triboelectric Nanogenerator Operated in Conjunction Modes and Low Crest Factor The high‐output triboelectric nanogenerator (TENG) is indispensable for its practical applications toward industrial products. However, the electricity loss in simple parallel connection among all units and the typically high crest factor output seriously hamper the practical applications of TENG. Here, a rectified TENG is reported in parallel structure to solve the problem of electricity loss in simple parallel connection. The rotational contact–separation structure with phase difference between rectified TENGs addresses high crest factor output and extends service life of rotational TENG simultaneously. The current crest factor is dramatically decreased to 1.31 in multiple rectifier multiple TENG in parallel (MRM‐TENG), while that of TENG in simple parallel is higher than 6. Meanwhile, the current output can retain up to ≈93% of its initial performance after 7 200 000 rotations under 2.00 r s−1 of 1000 h. Furthermore, the equivalent current can be in linear growth with low crest factor by making MRM‐TENG in parallel for distributed energy supply without electricity loss. This work may provide a new strategy for TENG in parallel to achieve a low crest factor output and long‐term cycling stability power generation in distributed energy harvesting for large‐scale power application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Long‐Lifetime Triboelectric Nanogenerator Operated in Conjunction Modes and Low Crest Factor

Loading next page...
 
/lp/wiley/long-lifetime-triboelectric-nanogenerator-operated-in-conjunction-SEnyueYQFt

References (29)

Publisher
Wiley
Copyright
© 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201903024
Publisher site
See Article on Publisher Site

Abstract

The high‐output triboelectric nanogenerator (TENG) is indispensable for its practical applications toward industrial products. However, the electricity loss in simple parallel connection among all units and the typically high crest factor output seriously hamper the practical applications of TENG. Here, a rectified TENG is reported in parallel structure to solve the problem of electricity loss in simple parallel connection. The rotational contact–separation structure with phase difference between rectified TENGs addresses high crest factor output and extends service life of rotational TENG simultaneously. The current crest factor is dramatically decreased to 1.31 in multiple rectifier multiple TENG in parallel (MRM‐TENG), while that of TENG in simple parallel is higher than 6. Meanwhile, the current output can retain up to ≈93% of its initial performance after 7 200 000 rotations under 2.00 r s−1 of 1000 h. Furthermore, the equivalent current can be in linear growth with low crest factor by making MRM‐TENG in parallel for distributed energy supply without electricity loss. This work may provide a new strategy for TENG in parallel to achieve a low crest factor output and long‐term cycling stability power generation in distributed energy harvesting for large‐scale power application.

Journal

Advanced Energy MaterialsWiley

Published: Feb 1, 2020

Keywords: ; ;

There are no references for this article.