Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

K Ca 2 channels transiently downregulated during spatial learning and memory in rats

K Ca 2 channels transiently downregulated during spatial learning and memory in rats Small‐conductance calcium‐activated potassium channels (KCa2) are essential components involved in the modulation of neuronal excitability, underlying learning and memory. Recent evidence suggests that KCa2 channel activity reduces synaptic transmission in a postsynaptic NMDA receptor‐dependent manner and is modulated by long‐term potentiation. We used radioactive in situ hybridization and apamin binding to investigate the amount of KCa2 subunit mRNA and KCa2 proteins in brain structures involved in learning and memory at different stages of a radial‐arm maze task in naive, pseudoconditioned, and conditioned rats. We observed significant differences in KCa2.2 and KCa2.3, but not KCa2.1 mRNA levels, between conditioned and pseudoconditioned rats. KCa2.2 levels were transiently reduced in the dorsal CA fields of the hippocampus, whereas KCa2.3 mRNA levels were reduced in the dorsal and ventral CA fields of the hippocampus, entorhinal cortex, and basolateral amygdaloid nucleus in conditioned rats, during early stages of learning. Levels of apamin‐binding sites displayed a similar pattern to KCa2 mRNA levels during learning. Spatial learning performance was positively correlated with levels of apamin‐binding sites and KCa2.3 mRNA in the dorsal CA1 field and negatively correlated in the dorsal CA3 field. These findings suggest that KCa2 channels are transiently downregulated in the early stages of learning and that regulation of KCa2 channel levels is involved in the modification of neuronal substrates underlying new information acquisition. © 2009 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hippocampus Wiley

K Ca 2 channels transiently downregulated during spatial learning and memory in rats

Loading next page...
 
/lp/wiley/k-ca-2-channels-transiently-downregulated-during-spatial-learning-and-aPtjPcVA7m

References (70)

Publisher
Wiley
Copyright
Copyright © 2009 Wiley‐Liss, Inc.
ISSN
1050-9631
eISSN
1098-1063
DOI
10.1002/hipo.20622
pmid
19437421
Publisher site
See Article on Publisher Site

Abstract

Small‐conductance calcium‐activated potassium channels (KCa2) are essential components involved in the modulation of neuronal excitability, underlying learning and memory. Recent evidence suggests that KCa2 channel activity reduces synaptic transmission in a postsynaptic NMDA receptor‐dependent manner and is modulated by long‐term potentiation. We used radioactive in situ hybridization and apamin binding to investigate the amount of KCa2 subunit mRNA and KCa2 proteins in brain structures involved in learning and memory at different stages of a radial‐arm maze task in naive, pseudoconditioned, and conditioned rats. We observed significant differences in KCa2.2 and KCa2.3, but not KCa2.1 mRNA levels, between conditioned and pseudoconditioned rats. KCa2.2 levels were transiently reduced in the dorsal CA fields of the hippocampus, whereas KCa2.3 mRNA levels were reduced in the dorsal and ventral CA fields of the hippocampus, entorhinal cortex, and basolateral amygdaloid nucleus in conditioned rats, during early stages of learning. Levels of apamin‐binding sites displayed a similar pattern to KCa2 mRNA levels during learning. Spatial learning performance was positively correlated with levels of apamin‐binding sites and KCa2.3 mRNA in the dorsal CA1 field and negatively correlated in the dorsal CA3 field. These findings suggest that KCa2 channels are transiently downregulated in the early stages of learning and that regulation of KCa2 channel levels is involved in the modification of neuronal substrates underlying new information acquisition. © 2009 Wiley‐Liss, Inc.

Journal

HippocampusWiley

Published: Mar 1, 2010

There are no references for this article.