Access the full text.
Sign up today, get DeepDyve free for 14 days.
Blends of polymer donors (PDs) and small molecule acceptors (SMAs) have afforded highly efficient polymer solar cells (PSCs). However, most of the efficient PSCs are processed using toxic halogenated solvents, and they are mechanically fragile. Here, a new series of PDs by incorporating a hydrophilic oligo(ethylene glycol) flexible spacer (OEG‐FS) is developed, and efficient PSCs with a high power conversion efficiency (PCE) of 17.74% processed by a non‐halogenated solvent are demonstrated. Importantly, the incorporation of these OEG‐FSs into the PDs significantly increases the mechanical robustness and ductility of resulting PSCs, making them suitable for application as stretchable devices. The OEG‐FS alleviates excessive backbone rigidity of the PDs while enhancing their pre‐aggregation in the non‐halogenated solvent. In addition, the OEG‐FS in the PDs enhances PD‐SMA interfacial interactions and improves blend morphology, resulting in efficient charge generation and mechanical stress dissipation. The resulting PSCs demonstrate a superior PCE (17.74%) and high crack‐onset strain (COS = 10.50%), outperforming the PSCs without OEG (PCE = 15.64% and COS = 2.99%). Importantly, intrinsically stretchable (IS) PSCs containing the PD featuring OEG‐FS exhibit a high PCE (12.05%) and stretchability (maintaining 80% of the initial PCE after 22% strain), demonstrating their viability for wearable applications.
Advanced Energy Materials – Wiley
Published: Dec 1, 2022
Keywords: eco‐friendly processing; intrinsically stretchable solar cells; mechanical robustness; polymer donors; polymer solar cells
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.