Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Integrating Band Structure Engineering with All‐Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System

Integrating Band Structure Engineering with All‐Scale Hierarchical Structuring for High... PbTe1−xSex‐2%Na‐y%SrTe system is investigated and a high maximum ZT of 2.3 at 923 K for PbTe0.85Se0.15‐2%Na‐4%SrTe is reported. This is achieved by performing electronic band structures modifications as well as all‐scale hierarchical structuring and combining the two effects. It is found that high ZTs in PbTe0.85Se0.15‐2%Na‐4%SrTe are possible at all temperature from 300 to 873 K with an average ZTave of 1.23. The high performance in PbTe1−xSex‐2%Na‐y%SrTe can be achieved by either choosing PbTe‐2Na‐4SrTe or PbTe0.85Se0.15‐2Na as a matrix. At room temperature the carrier mobility shows negligible variations as SrTe fraction is increased, however the lattice thermal conductivity is significantly reduced from ≈1.1 to ≈0.82 W m−1 K−1 when 5.0% SrTe is added, correspondingly, the lattice thermal conductivity at 923 K decreases from ≈0.59 to ≈0.43 W m−1 K−1. The power factor maxima of PbTe1−xSex‐2Na‐4SrTe shift systematically to higher temperature with rising Se fractions due to bands divergence. The maximum power factors reach ≈27, ≈30, ≈31 μW cm−1 K−2 for the x = 0, 0.05, and 0.15 samples peak at 473, 573, and 623 K, respectively. The results indicate that ZT can be increased by synergistic integration of band structure engineering and all‐scale hierarchical architectures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Integrating Band Structure Engineering with All‐Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System

Loading next page...
 
/lp/wiley/integrating-band-structure-engineering-with-all-scale-hierarchical-sEBuLgbfSx

References (57)

Publisher
Wiley
Copyright
© 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201601450
Publisher site
See Article on Publisher Site

Abstract

PbTe1−xSex‐2%Na‐y%SrTe system is investigated and a high maximum ZT of 2.3 at 923 K for PbTe0.85Se0.15‐2%Na‐4%SrTe is reported. This is achieved by performing electronic band structures modifications as well as all‐scale hierarchical structuring and combining the two effects. It is found that high ZTs in PbTe0.85Se0.15‐2%Na‐4%SrTe are possible at all temperature from 300 to 873 K with an average ZTave of 1.23. The high performance in PbTe1−xSex‐2%Na‐y%SrTe can be achieved by either choosing PbTe‐2Na‐4SrTe or PbTe0.85Se0.15‐2Na as a matrix. At room temperature the carrier mobility shows negligible variations as SrTe fraction is increased, however the lattice thermal conductivity is significantly reduced from ≈1.1 to ≈0.82 W m−1 K−1 when 5.0% SrTe is added, correspondingly, the lattice thermal conductivity at 923 K decreases from ≈0.59 to ≈0.43 W m−1 K−1. The power factor maxima of PbTe1−xSex‐2Na‐4SrTe shift systematically to higher temperature with rising Se fractions due to bands divergence. The maximum power factors reach ≈27, ≈30, ≈31 μW cm−1 K−2 for the x = 0, 0.05, and 0.15 samples peak at 473, 573, and 623 K, respectively. The results indicate that ZT can be increased by synergistic integration of band structure engineering and all‐scale hierarchical architectures.

Journal

Advanced Energy MaterialsWiley

Published: Feb 1, 2017

Keywords: ; ; ;

There are no references for this article.