Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Hybrid Piezo/Triboelectric‐Driven Self‐Charging Electrochromic Supercapacitor Power Package

Hybrid Piezo/Triboelectric‐Driven Self‐Charging Electrochromic Supercapacitor Power Package The rapid development of personal electronics imposes a great challenge on sustainable and maintenance‐free power supplies. The integration of nanogenerators (NG) and electrochromic supercapacitors (SC) offers a promising solution to efficiently convert mechanical energy to stored electrical energy in a predictable and noticeable manner. In this paper, by integrating hybrid NGs and electrochromic micro‐SCs (µ‐SCs) array, the authors demonstrate a smart self‐charging power package capable of indicating the charging state with color change. The electrochromic µ‐SC employs Ag nanowires/NiO as electrode materials, exhibiting high capacitance (3.47 mF cm−2) and stable cycling performance (80.7% for 10000 cycles). The hybrid NG can produce a high output voltage of 150 V and an enhanced output current of 20 µA to satisfy the self‐charging requirements. The integrated electrochromic µ‐SCs array is capable of self‐charging to 3 V to light up a LED under human palm impact. The charging states can be estimated according to the color differences with the naked eye during the self‐charging process. Moreover, it is possible to design the planar interdigitated electrodes into different shapes according to user demand. The proposed simple and cost‐effective approaches for smart self‐charging power package may pave the way for future intelligent, independent and continuous operation of daily electronics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Hybrid Piezo/Triboelectric‐Driven Self‐Charging Electrochromic Supercapacitor Power Package

Loading next page...
 
/lp/wiley/hybrid-piezo-triboelectric-driven-self-charging-electrochromic-jPBR4Vk9TN

References (40)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201800069
Publisher site
See Article on Publisher Site

Abstract

The rapid development of personal electronics imposes a great challenge on sustainable and maintenance‐free power supplies. The integration of nanogenerators (NG) and electrochromic supercapacitors (SC) offers a promising solution to efficiently convert mechanical energy to stored electrical energy in a predictable and noticeable manner. In this paper, by integrating hybrid NGs and electrochromic micro‐SCs (µ‐SCs) array, the authors demonstrate a smart self‐charging power package capable of indicating the charging state with color change. The electrochromic µ‐SC employs Ag nanowires/NiO as electrode materials, exhibiting high capacitance (3.47 mF cm−2) and stable cycling performance (80.7% for 10000 cycles). The hybrid NG can produce a high output voltage of 150 V and an enhanced output current of 20 µA to satisfy the self‐charging requirements. The integrated electrochromic µ‐SCs array is capable of self‐charging to 3 V to light up a LED under human palm impact. The charging states can be estimated according to the color differences with the naked eye during the self‐charging process. Moreover, it is possible to design the planar interdigitated electrodes into different shapes according to user demand. The proposed simple and cost‐effective approaches for smart self‐charging power package may pave the way for future intelligent, independent and continuous operation of daily electronics.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

There are no references for this article.