Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

High‐Temperature Treatment of Li‐Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling

High‐Temperature Treatment of Li‐Rich Cathode Materials with Ammonia: Improved Capacity and Mean... Li‐rich electrode materials of the family xLi2MnO3·(1−x)LiNiaCobMncO2 (a + b + c = 1) suffer a voltage fade upon cycling that limits their utilization in commercial batteries despite their extremely high discharge capacity, ≈250 mA h g−1. Li‐rich, 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2, is exposed to NH3 at 400 °C, producing materials with improved characteristics: enhanced electrode capacity and a limited average voltage fade during 100 cycles in half cells versus Li. Three main changes caused by NH3 treatment are established. First, a general bulk reduction of Co and Mn is observed via X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure. Next, a structural rearrangement lowers the coordination number of CoO and MnO bonds, as well as formation of a surface spinel‐like structure. Additionally, Li+ removal from the bulk causes the formation of surface LiOH, Li2CO3, and Li2O. These structural and surface changes can enhance the voltage and capacity stability of the Li‐rich material electrodes after moderate NH3 treatment times of 1–2 h. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Loading next page...
 
/lp/wiley/high-temperature-treatment-of-li-rich-cathode-materials-with-ammonia-BwincrY7J3

References (70)

Publisher
Wiley
Copyright
© 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201700708
Publisher site
See Article on Publisher Site

Abstract

Li‐rich electrode materials of the family xLi2MnO3·(1−x)LiNiaCobMncO2 (a + b + c = 1) suffer a voltage fade upon cycling that limits their utilization in commercial batteries despite their extremely high discharge capacity, ≈250 mA h g−1. Li‐rich, 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2, is exposed to NH3 at 400 °C, producing materials with improved characteristics: enhanced electrode capacity and a limited average voltage fade during 100 cycles in half cells versus Li. Three main changes caused by NH3 treatment are established. First, a general bulk reduction of Co and Mn is observed via X‐ray photoelectron spectroscopy and X‐ray absorption near edge structure. Next, a structural rearrangement lowers the coordination number of CoO and MnO bonds, as well as formation of a surface spinel‐like structure. Additionally, Li+ removal from the bulk causes the formation of surface LiOH, Li2CO3, and Li2O. These structural and surface changes can enhance the voltage and capacity stability of the Li‐rich material electrodes after moderate NH3 treatment times of 1–2 h.

Journal

Advanced Energy MaterialsWiley

Published: Sep 1, 2017

Keywords: ; ; ; ; ;

There are no references for this article.