Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

High Performance, Flexible, Solid‐State Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane

High Performance, Flexible, Solid‐State Supercapacitors Based on a Renewable and Biodegradable... A flexible, transparent, and renewable mesoporous cellulose membrane (mCel‐membrane) featuring uniform mesopores of ≈24.7 nm and high porosity of 71.78% is prepared via a facile and scalable solution‐phase inversion process. KOH‐saturated mCel‐membrane as a polymer electrolyte demonstrates a high electrolyte retention of 451.2 wt%, a high ionic conductivity of 0.325 S cm−1, and excellent mechanical flexibility and robustness. A solid‐state electric double layer capacitor (EDLC) using activated carbon as electrodes, the KOH‐saturated mCel‐membrane as a polymer electrolyte exhibits a high capacitance of 110 F g−1 at 1.0 A g−1, and long cycling life of 10 000 cycles with 84.7% capacitance retention. Moreover, a highly integrated planar‐type micro‐supercapacitor (MSC) can be facilely fabricated by directly depositing the electrode materials on the mCel‐membrane‐based polymer electrolyte without using complicated devices. The resulting MSC exhibits a high areal capacitance of 153.34 mF cm−2 and volumetric capacitance of 191.66 F cm−3 at 10 mV s−1, representing one of the highest values among all carbon‐based MSC devices. These findings suggest that the developed renewable, flexible, mesoporous cellulose membrane holds great promise in the practical applications of flexible, solid‐state, portable energy storage devices that are not limited to supercapacitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

High Performance, Flexible, Solid‐State Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane

Loading next page...
 
/lp/wiley/high-performance-flexible-solid-state-supercapacitors-based-on-a-rcw3GaZTSL
Publisher
Wiley
Copyright
© 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201700739
Publisher site
See Article on Publisher Site

Abstract

A flexible, transparent, and renewable mesoporous cellulose membrane (mCel‐membrane) featuring uniform mesopores of ≈24.7 nm and high porosity of 71.78% is prepared via a facile and scalable solution‐phase inversion process. KOH‐saturated mCel‐membrane as a polymer electrolyte demonstrates a high electrolyte retention of 451.2 wt%, a high ionic conductivity of 0.325 S cm−1, and excellent mechanical flexibility and robustness. A solid‐state electric double layer capacitor (EDLC) using activated carbon as electrodes, the KOH‐saturated mCel‐membrane as a polymer electrolyte exhibits a high capacitance of 110 F g−1 at 1.0 A g−1, and long cycling life of 10 000 cycles with 84.7% capacitance retention. Moreover, a highly integrated planar‐type micro‐supercapacitor (MSC) can be facilely fabricated by directly depositing the electrode materials on the mCel‐membrane‐based polymer electrolyte without using complicated devices. The resulting MSC exhibits a high areal capacitance of 153.34 mF cm−2 and volumetric capacitance of 191.66 F cm−3 at 10 mV s−1, representing one of the highest values among all carbon‐based MSC devices. These findings suggest that the developed renewable, flexible, mesoporous cellulose membrane holds great promise in the practical applications of flexible, solid‐state, portable energy storage devices that are not limited to supercapacitors.

Journal

Advanced Energy MaterialsWiley

Published: Sep 1, 2017

Keywords: ; ; ; ;

References