Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Growth and reproduction of the non‐native icefish Neosalanx taihuensis Chen, 1956 (Salangidae) in a plateau lake, southwestern China

Growth and reproduction of the non‐native icefish Neosalanx taihuensis Chen, 1956 (Salangidae) in... Growth, reproduction and abundance traits of the invasive icefish Neosalanx taihuensis Chen, 1956 were investigated monthly from July 2009 to May 2011 in Lake Erhai on the Yunnan‐Guizhou Plateau, south‐western China, in order to explore the changes in life‐history traits after translocation. The results indicated that the icefish exhibited obvious plasticity in growth and reproduction traits. Growth of the fish in Lake Erhai was faster than that in native waters and in other translocated reservoirs. By fitting the von Bertalanffy growth model to the data, it was estimated that icefish obtain an asymptotic size of 96.12 mm, a K of 1.61, and a t0 of ‐0.26; the calculated overall growth performance index φ′ was 4.17. The strategy of reproduction changed from multiple‐ to single‐spawning. The spawning period was from October to December with the absolute and relative fecundities of 1250 ± 169 eggs per ind and 2557 ± 245 eggs per g, respectively. Plasticity in icefish growth and reproduction in Lake Erhai greatly facilitated its population establishment, making it one of the most abundant fish species. The icefish invasion in the lake may be one of the reasons for the decrease or extinction of native fish species populations, and some measures for the control of this invasive fish are suggested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ichthyology Wiley

Growth and reproduction of the non‐native icefish Neosalanx taihuensis Chen, 1956 (Salangidae) in a plateau lake, southwestern China

Growth and reproduction of the non‐native icefish Neosalanx taihuensis Chen, 1956 (Salangidae) in a plateau lake, southwestern China

Journal of Applied Ichthyology , Volume 30 (5) – Jan 1, 2014

Abstract

Growth, reproduction and abundance traits of the invasive icefish Neosalanx taihuensis Chen, 1956 were investigated monthly from July 2009 to May 2011 in Lake Erhai on the Yunnan‐Guizhou Plateau, south‐western China, in order to explore the changes in life‐history traits after translocation. The results indicated that the icefish exhibited obvious plasticity in growth and reproduction traits. Growth of the fish in Lake Erhai was faster than that in native waters and in other translocated reservoirs. By fitting the von Bertalanffy growth model to the data, it was estimated that icefish obtain an asymptotic size of 96.12 mm, a K of 1.61, and a t0 of ‐0.26; the calculated overall growth performance index φ′ was 4.17. The strategy of reproduction changed from multiple‐ to single‐spawning. The spawning period was from October to December with the absolute and relative fecundities of 1250 ± 169 eggs per ind and 2557 ± 245 eggs per g, respectively. Plasticity in icefish growth and reproduction in Lake Erhai greatly facilitated its population establishment, making it one of the most abundant fish species. The icefish invasion in the lake may be one of the reasons for the decrease or extinction of native fish species populations, and some measures for the control of this invasive fish are suggested.

Loading next page...
 
/lp/wiley/growth-and-reproduction-of-the-non-native-icefish-neosalanx-taihuensis-K70E4yUb0s

References (34)

Publisher
Wiley
Copyright
Copyright © 2014 Blackwell Verlag GmbH
ISSN
0175-8659
eISSN
1439-0426
DOI
10.1111/jai.12475
Publisher site
See Article on Publisher Site

Abstract

Growth, reproduction and abundance traits of the invasive icefish Neosalanx taihuensis Chen, 1956 were investigated monthly from July 2009 to May 2011 in Lake Erhai on the Yunnan‐Guizhou Plateau, south‐western China, in order to explore the changes in life‐history traits after translocation. The results indicated that the icefish exhibited obvious plasticity in growth and reproduction traits. Growth of the fish in Lake Erhai was faster than that in native waters and in other translocated reservoirs. By fitting the von Bertalanffy growth model to the data, it was estimated that icefish obtain an asymptotic size of 96.12 mm, a K of 1.61, and a t0 of ‐0.26; the calculated overall growth performance index φ′ was 4.17. The strategy of reproduction changed from multiple‐ to single‐spawning. The spawning period was from October to December with the absolute and relative fecundities of 1250 ± 169 eggs per ind and 2557 ± 245 eggs per g, respectively. Plasticity in icefish growth and reproduction in Lake Erhai greatly facilitated its population establishment, making it one of the most abundant fish species. The icefish invasion in the lake may be one of the reasons for the decrease or extinction of native fish species populations, and some measures for the control of this invasive fish are suggested.

Journal

Journal of Applied IchthyologyWiley

Published: Jan 1, 2014

There are no references for this article.