Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine‐Substituted Polymer Donors

From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton... An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine‐Substituted Polymer Donors

Loading next page...
 
/lp/wiley/from-recombination-dynamics-to-device-performance-quantifying-the-Hhi793s6bc

References (42)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201701678
Publisher site
See Article on Publisher Site

Abstract

An original set of experimental and modeling tools is used to quantify the yield of each of the physical processes leading to photocurrent generation in organic bulk heterojunction solar cells, enabling evaluation of materials and processing condition beyond the trivial comparison of device performances. Transient absorption spectroscopy, “the” technique to monitor all intermediate states over the entire relevant timescale, is combined with time‐delayed collection field experiments, transfer matrix simulations, spectral deconvolution, and parametrization of the charge carrier recombination by a two‐pool model, allowing quantification of densities of excitons and charges and extrapolation of their kinetics to device‐relevant conditions. Photon absorption, charge transfer, charge separation, and charge extraction are all quantified for two recently developed wide‐bandgap donor polymers: poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐difluorothiophene) (PBDT[2F]T) and its nonfluorinated counterpart poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene‐3,4‐thiophene) (PBDT[2H]T) combined with PC71BM in bulk heterojunctions. The product of these yields is shown to agree well with the devices' external quantum efficiency. This methodology elucidates in the specific case studied here the origin of improved photocurrents obtained when using PBDT[2F]T instead of PBDT[2H]T as well as upon using solvent additives. Furthermore, a higher charge transfer (CT)‐state energy is shown to lead to significantly lower energy losses (resulting in higher VOC) during charge generation compared to P3HT:PCBM.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

There are no references for this article.