Access the full text.
Sign up today, get DeepDyve free for 14 days.
The RNA viruses cowpea chlorotic mottle, satellite tobacco mosaic, pariacoto and MS2, already considered in part IV of this series of papers [Janner, A. (2011a), Acta Cryst. A67, 517–520], are investigated further, with the aim to arrive at a possible physical basis for their structural properties. The shell structure of the filled capsid is analyzed in terms of successive spherical boundaries of the sets of icosahedral equivalent chains. By inversion in the sphere enclosing the capsid, the internal boundaries are transformed into external ones, which are more easily visualized. This graphical procedure reveals the presence of regularly spaced shells with boundaries fitting with anti‐nodal surfaces of the virus considered as an elastic resonator. The centers of gravity of the various chains occur in the nodal regions of eigenvibrations with wavelength λ = R0/K0, where R0 is the radius of the virus and K0 takes one of the values 12, 6, 4, 3, depending on the mode. The resonator model is consistent with practically all spherical shell boundaries, whereas deviations are observed for the icosahedral axial modes, which apparently play a secondary role with respect to the spherical ones. Both the spherical and the axial anti‐nodal surfaces fit very well with the packed structure of the viruses in the crystal which, accordingly, is expected to have eigenfrequencies related to those of the virus. These results open the way to a better understanding of the possibility of breaking the capsid using resonant forced oscillations excited, for example, by an applied elastic shock or by irradiation with femtosecond laser pulses, as already realised by K.‐T. Tsen and co‐workers. An alternative `plywood' model connected to the extreme elastic properties of the capsid is also considered.
Acta Crystallographica Section A Foundations of Crystallography – Wiley
Published: Jan 1, 2011
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.