Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of Extending the Growing Period on Yield Formation of Sugar Beet

Effect of Extending the Growing Period on Yield Formation of Sugar Beet Autumn sown sugar beets (winter beets) are expected to yield markedly higher than spring sown beets. This requires a continuous growth during an extended growing period. So far, bolting‐resistant sugar beet varieties are not available to test winter beets under field conditions in Central Europe. The objective of this study was therefore to analyse yield formation and sugar storage of sugar beet plants during an extended growing period to estimate whether sugar beet has the potential to generate the theoretically expected yield increase. From 2008 to 2012, pot experiments were carried out in the glasshouse with 11 sowing dates spread over the years with sequential harvests. The oldest plants were grown for 859 days (14 242 °Cd). Root fresh matter yield continuously increased till the latest harvest. In contrast, the sugar concentration reached an optimum value between 3400 and 5000 °Cd and then decreased with time. Despite longer growing periods, the number of cambium rings, which are regarded as essential for sugar storage, did not change. This points to an early and genetically fixed determination of the formation of cambium rings. Additionally, the rate of photosynthesis decreased concomitantly with the sugar concentration. In conclusion, there is some evidence that the sugar concentration of the storage root is limited by the sink capacity, which in turn controls the source activity by a feedback regulation of photosynthesis and leaf formation. The dry matter composition of the storage root changed towards lower sugar concentration and concurrent higher concentration of cell wall compounds (marc). The sugar yield still increased beyond a thermal time at which winter beets will probably be harvested in practice. Hence, the theoretical yield increase in autumn sown sugar beets can be realized, provided that the plants show sufficient winter hardiness and bolting resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Agronomy and Crop Science Wiley

Effect of Extending the Growing Period on Yield Formation of Sugar Beet

Loading next page...
 
/lp/wiley/effect-of-extending-the-growing-period-on-yield-formation-of-sugar-D1iUt5Uw3R

References (43)

Publisher
Wiley
Copyright
Copyright © 2016 Blackwell Verlag GmbH
ISSN
0931-2250
eISSN
1439-037X
DOI
10.1111/jac.12153
Publisher site
See Article on Publisher Site

Abstract

Autumn sown sugar beets (winter beets) are expected to yield markedly higher than spring sown beets. This requires a continuous growth during an extended growing period. So far, bolting‐resistant sugar beet varieties are not available to test winter beets under field conditions in Central Europe. The objective of this study was therefore to analyse yield formation and sugar storage of sugar beet plants during an extended growing period to estimate whether sugar beet has the potential to generate the theoretically expected yield increase. From 2008 to 2012, pot experiments were carried out in the glasshouse with 11 sowing dates spread over the years with sequential harvests. The oldest plants were grown for 859 days (14 242 °Cd). Root fresh matter yield continuously increased till the latest harvest. In contrast, the sugar concentration reached an optimum value between 3400 and 5000 °Cd and then decreased with time. Despite longer growing periods, the number of cambium rings, which are regarded as essential for sugar storage, did not change. This points to an early and genetically fixed determination of the formation of cambium rings. Additionally, the rate of photosynthesis decreased concomitantly with the sugar concentration. In conclusion, there is some evidence that the sugar concentration of the storage root is limited by the sink capacity, which in turn controls the source activity by a feedback regulation of photosynthesis and leaf formation. The dry matter composition of the storage root changed towards lower sugar concentration and concurrent higher concentration of cell wall compounds (marc). The sugar yield still increased beyond a thermal time at which winter beets will probably be harvested in practice. Hence, the theoretical yield increase in autumn sown sugar beets can be realized, provided that the plants show sufficient winter hardiness and bolting resistance.

Journal

Journal of Agronomy and Crop ScienceWiley

Published: Dec 1, 2016

Keywords: ; ; ; ; ;

There are no references for this article.