Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane‐impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH‐O) and a poly(N‐isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

Loading next page...
 
/lp/wiley/dual-phase-change-thermal-diodes-for-enhanced-rectification-ratios-wlz9zsQVvv

References (44)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201702692
Publisher site
See Article on Publisher Site

Abstract

Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane‐impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH‐O) and a poly(N‐isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

There are no references for this article.