Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Design‐to‐Device Approach Affords Panchromatic Co‐Sensitized Solar Cells

Design‐to‐Device Approach Affords Panchromatic Co‐Sensitized Solar Cells Data‐driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design‐to‐device study that uses high‐throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data‐mining methods source 9431 dye candidates, which are auto‐generated from the literature using a custom text‐mining tool. These candidates are sifted via a data‐mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co‐sensitizers for dye‐sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co‐sensitized DSSCs with power conversion efficiencies comparable to those of the high‐performance, organometallic dye, N719. These results demonstrate how data‐driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Loading next page...
 
/lp/wiley/design-to-device-approach-affords-panchromatic-co-sensitized-solar-0pnB123cll

References (58)

Publisher
Wiley
Copyright
"© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim"
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201802820
Publisher site
See Article on Publisher Site

Abstract

Data‐driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design‐to‐device study that uses high‐throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data‐mining methods source 9431 dye candidates, which are auto‐generated from the literature using a custom text‐mining tool. These candidates are sifted via a data‐mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co‐sensitizers for dye‐sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co‐sensitized DSSCs with power conversion efficiencies comparable to those of the high‐performance, organometallic dye, N719. These results demonstrate how data‐driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications.

Journal

Advanced Energy MaterialsWiley

Published: Feb 1, 2019

Keywords: ; ; ; ;

There are no references for this article.