Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Deletion of the L‐type calcium channel Ca V 1.3 but not Ca V 1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons

Deletion of the L‐type calcium channel Ca V 1.3 but not Ca V 1.2 results in a diminished sAHP in... Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium‐dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age‐related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium‐activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage‐gated L‐type calcium channels (L‐VGCCs) contributes to the generation of the AHP. Two L‐VGCC subtypes are predominately expressed in the hippocampus, CaV1.2 and CaV1.3; however, it is not known which L‐VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit‐specific agonists or antagonists. Therefore, using mice in which the gene encoding CaV1.2 or CaV1.3 was deleted, we sought to determine the impact of alterations in levels of these two L‐VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from CaV1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from CaV1.3 knockout mice as compared with neurons from wild‐type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from CaV1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via CaV1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of CaV1.3, but not CaV1.2, significantly impacts the generation of the sAHP. © 2009 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hippocampus Wiley

Deletion of the L‐type calcium channel Ca V 1.3 but not Ca V 1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons

Loading next page...
 
/lp/wiley/deletion-of-the-l-type-calcium-channel-ca-v-1-3-but-not-ca-v-1-2-deyM2NG9fa

References (76)

Publisher
Wiley
Copyright
Copyright © 2009 Wiley‐Liss, Inc.
ISSN
1050-9631
eISSN
1098-1063
DOI
10.1002/hipo.20728
pmid
20014384
Publisher site
See Article on Publisher Site

Abstract

Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium‐dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age‐related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium‐activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage‐gated L‐type calcium channels (L‐VGCCs) contributes to the generation of the AHP. Two L‐VGCC subtypes are predominately expressed in the hippocampus, CaV1.2 and CaV1.3; however, it is not known which L‐VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit‐specific agonists or antagonists. Therefore, using mice in which the gene encoding CaV1.2 or CaV1.3 was deleted, we sought to determine the impact of alterations in levels of these two L‐VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from CaV1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from CaV1.3 knockout mice as compared with neurons from wild‐type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from CaV1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via CaV1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of CaV1.3, but not CaV1.2, significantly impacts the generation of the sAHP. © 2009 Wiley‐Liss, Inc.

Journal

HippocampusWiley

Published: Feb 1, 2011

There are no references for this article.