Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Degree of correlation between total light interception and whole‐canopy net CO 2 exchange rate in two grapevine growth systems

Degree of correlation between total light interception and whole‐canopy net CO 2 exchange rate in... This paper shows the degree of precision by which measurement of total canopy light interception (TCLI) can estimate whole‐canopy net CO2 exchange rate (NCER). The test vines comprised a single 35° NE‐SW oriented hedgerow, with vertically shoot positioned grapevine canopies at either a low shoot density (10 shoots/metre of row) or a high shoot density (20 shoots/metre of row). TCLI was measured on different dates and at various times on each date (during the 2001 growing season) by a multiple line sensor equipped with 64 phototransistors (35 mm spacing). Each sensor had a spectral sensitivity in the 300–1100 nm waveband and the line of sensors was moved horizontally in steps of 10 cm. Whole‐canopy NCER was recorded over successive clear days using an enclosure method. TCLI and canopy NCER were highly correlated on a seasonal basis for both the low shoot density treatment (R2= 0.97) and the high shoot density treatment (R2= 0.94). The correlation became less precise (R2= 0.80 and 0.79 for low and high, respectively), when data taken at various times of day were treated separately. Canopy NCER derived from single TCLI readings taken at solar noon tended to be under‐estimated, while NCER derived from single TCLI readings taken later in the afternoon tended to be over‐estimated. Nevertheless, for a given training system, our method was sufficiently precise to predict seasonal increase of canopy NCER as well as the total leaf area at which NCER approached a maximum thus setting a value above which additional leaf area resulted in mutual shading without enhancing carbon assimilation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australian Journal of Grape and Wine Research Wiley

Degree of correlation between total light interception and whole‐canopy net CO 2 exchange rate in two grapevine growth systems

Loading next page...
 
/lp/wiley/degree-of-correlation-between-total-light-interception-and-whole-PaZzMTBhNZ

References (31)

Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1322-7130
eISSN
1755-0238
DOI
10.1111/j.1755-0238.2003.tb00226.x
Publisher site
See Article on Publisher Site

Abstract

This paper shows the degree of precision by which measurement of total canopy light interception (TCLI) can estimate whole‐canopy net CO2 exchange rate (NCER). The test vines comprised a single 35° NE‐SW oriented hedgerow, with vertically shoot positioned grapevine canopies at either a low shoot density (10 shoots/metre of row) or a high shoot density (20 shoots/metre of row). TCLI was measured on different dates and at various times on each date (during the 2001 growing season) by a multiple line sensor equipped with 64 phototransistors (35 mm spacing). Each sensor had a spectral sensitivity in the 300–1100 nm waveband and the line of sensors was moved horizontally in steps of 10 cm. Whole‐canopy NCER was recorded over successive clear days using an enclosure method. TCLI and canopy NCER were highly correlated on a seasonal basis for both the low shoot density treatment (R2= 0.97) and the high shoot density treatment (R2= 0.94). The correlation became less precise (R2= 0.80 and 0.79 for low and high, respectively), when data taken at various times of day were treated separately. Canopy NCER derived from single TCLI readings taken at solar noon tended to be under‐estimated, while NCER derived from single TCLI readings taken later in the afternoon tended to be over‐estimated. Nevertheless, for a given training system, our method was sufficiently precise to predict seasonal increase of canopy NCER as well as the total leaf area at which NCER approached a maximum thus setting a value above which additional leaf area resulted in mutual shading without enhancing carbon assimilation.

Journal

Australian Journal of Grape and Wine ResearchWiley

Published: Apr 1, 2003

There are no references for this article.