Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Core–Shell Aluminum@Carbon Nanospheres for Dual‐Ion Batteries with Excellent Cycling Performance under High Rates

Core–Shell Aluminum@Carbon Nanospheres for Dual‐Ion Batteries with Excellent Cycling Performance... Dual‐ion battery (DIB) has been proposed as a novel energy storage device with the merits of high safety, low cost and environmental friendliness. Herein, we have developed core/shell aluminum@carbon nanospheres (nAl@C) as anode material for DIB. The nanoscale framework is composed of an Al nanosphere and an amorphous carbon outer layer that is conductive and protective, facilitating the formation of a stable SEI film during cycling. Owing to the core‐shell structural design, the nAl@C nanospheres demonstrate significantly enhanced electrochemical performance in a nAl@C‐graphite DIB. The DIB exhibites high rate performance as well as superior cycling stability with a capacity of 88 mA h g‐1 with 94.6% capacity retention and high Coulombic efficiency (> 99.5%) after 1000 cycles at a high current rate of 15 C. In addition, the nAl@C‐G DIB deliveres an ultrahigh specific energy of 148 W h kg‐1 at a high power density of 3701 W kg‐1, which is much better than most commercial lithium‐ion batteries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Core–Shell Aluminum@Carbon Nanospheres for Dual‐Ion Batteries with Excellent Cycling Performance under High Rates

Loading next page...
 
/lp/wiley/core-shell-aluminum-carbon-nanospheres-for-dual-ion-batteries-with-FYXWAYdeRl

References (55)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201701967
Publisher site
See Article on Publisher Site

Abstract

Dual‐ion battery (DIB) has been proposed as a novel energy storage device with the merits of high safety, low cost and environmental friendliness. Herein, we have developed core/shell aluminum@carbon nanospheres (nAl@C) as anode material for DIB. The nanoscale framework is composed of an Al nanosphere and an amorphous carbon outer layer that is conductive and protective, facilitating the formation of a stable SEI film during cycling. Owing to the core‐shell structural design, the nAl@C nanospheres demonstrate significantly enhanced electrochemical performance in a nAl@C‐graphite DIB. The DIB exhibites high rate performance as well as superior cycling stability with a capacity of 88 mA h g‐1 with 94.6% capacity retention and high Coulombic efficiency (> 99.5%) after 1000 cycles at a high current rate of 15 C. In addition, the nAl@C‐G DIB deliveres an ultrahigh specific energy of 148 W h kg‐1 at a high power density of 3701 W kg‐1, which is much better than most commercial lithium‐ion batteries.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

There are no references for this article.