Access the full text.
Sign up today, get DeepDyve free for 14 days.
The combination of precious metals with non‐noble metals is an effective way to develop highly efficient, stable, and low cost electrocatalysts for overall water splitting. Herein, RhCu nanotubes (NTs) with rich structural defects are successfully synthesized by a mixed‐solvent strategy, which display superior activity and excellent stability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction in all pH values. In particular, it only needs 8, 12, and 57 mV to deliver the current density of 10 mA cm−2 for HER in alkaline, acidic, and neutral conditions, respectively. Experiments combined with density functional theory (DFT) calculations reveal that the exposure of a suitable composition of a highly active Rh3Cu1 alloy phase through acid etching is the key to improve electrocatalytic performance, since it weakens the adsorption free energy of atomic oxygen and hydrogen, as well as facilitating the dissociation of water molecules. In addition, the structural defects can also boost the catalytic performance because the adsorption of reactants can be largely enhanced. The results provide a simple method to prepare alloy NTs as highly efficient electrocatalysts for overall water splitting in all pH values.
Advanced Energy Materials – Wiley
Published: Mar 1, 2020
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.