Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Changes in Polyamine Titer in Rice Seedlings Following NaCl Salinity Stress

Changes in Polyamine Titer in Rice Seedlings Following NaCl Salinity Stress Seedlings of four rice cultivars differing in salt tolerance were raised in sand cultures under increasing levels of NaCl salinity and metabolic levels of total polyamines, spermidine, spermine, agmatine and the diamine putrescine were determined in roots and shoots during 5‐20 days growth period. Salinity caused a remarkable increase in total polyamines level in rice seedlings. At similar level of salinity roots as well as shoots of salt sensitive cvs. Ratna and Jaya showed higher level of total polyamines than tolerants. Salinity of 14 dSm−1 NaCl caused more than 2 times polyamine level in shoots of sensitive cultivars compared to tolerants. Accumulation of polyamines was greater in salt stressed shoots than roots. In nonsalinized seedlings there appeared a gradual increase in putrescine level during 5 to 20 days growth period. Salt treatment caused sharp increase in putrescine level in all cultivars, however under similar level of salinization salt stressed seedlings of sensitive cultivars had higher putrescine level than tolerants. In nonsalinized seedlings of sensitive cultivars spermidine level increased gradually during 5 to 20 days growth period whereas a decline in the level was observed in seedlings of tolerant cultivars during this period. Higher level of salinity caused marked increase in spermidine level in sensitive cultivars. Specially during 5 to 10 days of growth salinity caused increase in spermine level in seedlings of sensitive cultivars. In all cultivars salt stressed seedlings had higher agmatine level compared to non‐stressed. Salinity led to greater accumulation of certain unidentified polyamines in seedlings of sensitive cultivars. Increased levels of total polyamines, putrescine, spermidine and unknown polyamines in rice seedlings under salinization suggest their possible role in combating the adverse effects of salinity stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Agronomy and Crop Science Wiley

Changes in Polyamine Titer in Rice Seedlings Following NaCl Salinity Stress

Loading next page...
 
/lp/wiley/changes-in-polyamine-titer-in-rice-seedlings-following-nacl-salinity-ElePxMiYAe

References (20)

Publisher
Wiley
Copyright
Copyright © 1990 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0931-2250
eISSN
1439-037X
DOI
10.1111/j.1439-037X.1990.tb00830.x
Publisher site
See Article on Publisher Site

Abstract

Seedlings of four rice cultivars differing in salt tolerance were raised in sand cultures under increasing levels of NaCl salinity and metabolic levels of total polyamines, spermidine, spermine, agmatine and the diamine putrescine were determined in roots and shoots during 5‐20 days growth period. Salinity caused a remarkable increase in total polyamines level in rice seedlings. At similar level of salinity roots as well as shoots of salt sensitive cvs. Ratna and Jaya showed higher level of total polyamines than tolerants. Salinity of 14 dSm−1 NaCl caused more than 2 times polyamine level in shoots of sensitive cultivars compared to tolerants. Accumulation of polyamines was greater in salt stressed shoots than roots. In nonsalinized seedlings there appeared a gradual increase in putrescine level during 5 to 20 days growth period. Salt treatment caused sharp increase in putrescine level in all cultivars, however under similar level of salinization salt stressed seedlings of sensitive cultivars had higher putrescine level than tolerants. In nonsalinized seedlings of sensitive cultivars spermidine level increased gradually during 5 to 20 days growth period whereas a decline in the level was observed in seedlings of tolerant cultivars during this period. Higher level of salinity caused marked increase in spermidine level in sensitive cultivars. Specially during 5 to 10 days of growth salinity caused increase in spermine level in seedlings of sensitive cultivars. In all cultivars salt stressed seedlings had higher agmatine level compared to non‐stressed. Salinity led to greater accumulation of certain unidentified polyamines in seedlings of sensitive cultivars. Increased levels of total polyamines, putrescine, spermidine and unknown polyamines in rice seedlings under salinization suggest their possible role in combating the adverse effects of salinity stress.

Journal

Journal of Agronomy and Crop ScienceWiley

Published: Aug 1, 1990

There are no references for this article.