Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Boosting the Temperature Adaptability of Lithium Metal Batteries via a Moisture/Acid‐Purified, Ion‐Diffusion Accelerated Separator

Boosting the Temperature Adaptability of Lithium Metal Batteries via a Moisture/Acid‐Purified,... The reliable operation of Li metal batteries suffers from cathode collapse due to high‐voltage cycling, interfacial reactivity of the Li deposits, self‐discharge at the elevated temperatures, as well as the power output deterioration in low‐temperature scenarios. In contrast to the individual electrode optimization, herein, a hetero‐layered separator with an asymmetric functional coating on polyethylene is proposed in response to the aforementioned issues: On the face‐to‐cathode side, the hybrid layer of the molecular sieve and sulfonated melamine formaldehyde can scavenge the hydrofluoric acid and moisture residues from the carbonate electrolyte, maintaining the cathode robustness in both the high‐voltage cycling or high‐temperature storage scenarios; while the pre‐coated Ag2S layer in situ generates the Li10Ag3‐Li2S composite matrix in contact with the Li foil, promoting interfacial ion diffusion and isotropic Li deposition. The as‐constructed LiNi0.8Co0.1Mn0.1O2/Li pouch cell (3.2 Ah) with the hetero‐layered separator can achieve a high energy density of 400.6 Wh kg−1 on the cell level, as well as a wider temperature adaptability (0–75 °C). This asymmetric separator strategy enables facile energy‐dense cell prototyping with the commercial electrode/electrolyte. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Boosting the Temperature Adaptability of Lithium Metal Batteries via a Moisture/Acid‐Purified, Ion‐Diffusion Accelerated Separator

Loading next page...
 
/lp/wiley/boosting-the-temperature-adaptability-of-lithium-metal-batteries-via-a-J7IazbCD9d
Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202201390
Publisher site
See Article on Publisher Site

Abstract

The reliable operation of Li metal batteries suffers from cathode collapse due to high‐voltage cycling, interfacial reactivity of the Li deposits, self‐discharge at the elevated temperatures, as well as the power output deterioration in low‐temperature scenarios. In contrast to the individual electrode optimization, herein, a hetero‐layered separator with an asymmetric functional coating on polyethylene is proposed in response to the aforementioned issues: On the face‐to‐cathode side, the hybrid layer of the molecular sieve and sulfonated melamine formaldehyde can scavenge the hydrofluoric acid and moisture residues from the carbonate electrolyte, maintaining the cathode robustness in both the high‐voltage cycling or high‐temperature storage scenarios; while the pre‐coated Ag2S layer in situ generates the Li10Ag3‐Li2S composite matrix in contact with the Li foil, promoting interfacial ion diffusion and isotropic Li deposition. The as‐constructed LiNi0.8Co0.1Mn0.1O2/Li pouch cell (3.2 Ah) with the hetero‐layered separator can achieve a high energy density of 400.6 Wh kg−1 on the cell level, as well as a wider temperature adaptability (0–75 °C). This asymmetric separator strategy enables facile energy‐dense cell prototyping with the commercial electrode/electrolyte.

Journal

Advanced Energy MaterialsWiley

Published: Aug 1, 2022

Keywords: high energy density; impurity scavenging; isotropic Li deposition; Janus‐faced separators; temperature adaptability

References