Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Are chroma tolerances dependent on hue‐angle?

Are chroma tolerances dependent on hue‐angle? Relationships between suprathreshold chroma tolerances and CIELAB hue‐angles have been analyzed through the results of a new pair‐comparison experiment and the experimental combined data set employed by CIE TC 1–47 for the development of the latest CIE color‐difference formula, CIEDE2000. Chroma tolerances have been measured by 12 normal observers at 21 CRT‐generated color centers L*10 = 40, C*ab,10 = 20 and 40, and hab,10 at 30° regular steps). The results of this experiment lead to a chroma‐difference weighting function with hue‐angle dependence WCH, which is in good agreement with the one proposed by the LCD color‐difference formula (Color Res Appl 2001;26:369–375). This WCH function is also consistent with the experimental results provided by the combined data set employed by CIE TC 1–47. For the whole CIE TC 1–47 data set, as well as for each one of its four independent subsets, the PF/3 performance factor (Color Res Appl 1999;24:331–343) was improved by adding to CIEDE2000 the WCH function proposed by LCD, or the one derived by us using the results of our current experiment together with the combined data set employed by CIE TC 1–47. Nevertheless, unfortunately, from the current data, this PF/3 improvement is small (and statistically nonsignificant): 0.3 for the 3657 pairs provided by CIE TC 1–47 combined data set and 1.6 for a subset of 590 chromatic pairs (C*ab,10>5.0) with color differences lower than 5.0 CIELAB units and due mainly to chroma. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 420–427, 2004; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/col.20057 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Color Research & Application Wiley

Are chroma tolerances dependent on hue‐angle?

Loading next page...
 
/lp/wiley/are-chroma-tolerances-dependent-on-hue-angle-0VTzdDra42

References (27)

Publisher
Wiley
Copyright
Copyright © 2004 Wiley Periodicals, Inc.
ISSN
0361-2317
eISSN
1520-6378
DOI
10.1002/col.20057
Publisher site
See Article on Publisher Site

Abstract

Relationships between suprathreshold chroma tolerances and CIELAB hue‐angles have been analyzed through the results of a new pair‐comparison experiment and the experimental combined data set employed by CIE TC 1–47 for the development of the latest CIE color‐difference formula, CIEDE2000. Chroma tolerances have been measured by 12 normal observers at 21 CRT‐generated color centers L*10 = 40, C*ab,10 = 20 and 40, and hab,10 at 30° regular steps). The results of this experiment lead to a chroma‐difference weighting function with hue‐angle dependence WCH, which is in good agreement with the one proposed by the LCD color‐difference formula (Color Res Appl 2001;26:369–375). This WCH function is also consistent with the experimental results provided by the combined data set employed by CIE TC 1–47. For the whole CIE TC 1–47 data set, as well as for each one of its four independent subsets, the PF/3 performance factor (Color Res Appl 1999;24:331–343) was improved by adding to CIEDE2000 the WCH function proposed by LCD, or the one derived by us using the results of our current experiment together with the combined data set employed by CIE TC 1–47. Nevertheless, unfortunately, from the current data, this PF/3 improvement is small (and statistically nonsignificant): 0.3 for the 3657 pairs provided by CIE TC 1–47 combined data set and 1.6 for a subset of 590 chromatic pairs (C*ab,10>5.0) with color differences lower than 5.0 CIELAB units and due mainly to chroma. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 420–427, 2004; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/col.20057

Journal

Color Research & ApplicationWiley

Published: Dec 1, 2004

There are no references for this article.