Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Analysis of the presynaptic signaling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein

Analysis of the presynaptic signaling mechanisms underlying the inhibition of LTP in rat dentate... A great deal of recent evidence points to a role for tyrosine kinase in expression of LTP. Data have been presented that are consistent with the idea that tyrosine phosphorylation of proteins occurs in both the presynaptic and postsynaptic areas. In this study, we set out to investigate the role that tyrosine kinase might play presynaptically to modulate release of glutamate in an effort to understand the mechanism underlying the persistent increase in release that accompanies LTP in perforant path–granule cell synapses. We report that LTP was associated with increased calcium influx and glutamate release. LTP was also associated with an increase in phosphorylation of the α‐subunit of calcium channels and ERK in synaptosomes prepared from dentate gyrus, and these effects were inhibited when LTP was blocked by the tyrosine kinase inhibitor, genistein. LTP was accompanied by increased protein synthesis and increased phosphorylation of CREB in entorhinal cortex, effects that were also blocked by genistein. We conclude that tetanic stimulation leads to enhanced tyrosine phosphorylation of certain presynaptically located proteins that modulate glutamate release and contribute to expression of LTP. Hippocampus 2002;12:377–385. © 2002 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hippocampus Wiley

Analysis of the presynaptic signaling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein

Hippocampus , Volume 12 (3) – Jan 1, 2002

Loading next page...
 
/lp/wiley/analysis-of-the-presynaptic-signaling-mechanisms-underlying-the-KxQe7YdGsB

References (56)

Publisher
Wiley
Copyright
Copyright © 2002 Wiley‐Liss, Inc.
ISSN
1050-9631
eISSN
1098-1063
DOI
10.1002/hipo.10036
pmid
12099488
Publisher site
See Article on Publisher Site

Abstract

A great deal of recent evidence points to a role for tyrosine kinase in expression of LTP. Data have been presented that are consistent with the idea that tyrosine phosphorylation of proteins occurs in both the presynaptic and postsynaptic areas. In this study, we set out to investigate the role that tyrosine kinase might play presynaptically to modulate release of glutamate in an effort to understand the mechanism underlying the persistent increase in release that accompanies LTP in perforant path–granule cell synapses. We report that LTP was associated with increased calcium influx and glutamate release. LTP was also associated with an increase in phosphorylation of the α‐subunit of calcium channels and ERK in synaptosomes prepared from dentate gyrus, and these effects were inhibited when LTP was blocked by the tyrosine kinase inhibitor, genistein. LTP was accompanied by increased protein synthesis and increased phosphorylation of CREB in entorhinal cortex, effects that were also blocked by genistein. We conclude that tetanic stimulation leads to enhanced tyrosine phosphorylation of certain presynaptically located proteins that modulate glutamate release and contribute to expression of LTP. Hippocampus 2002;12:377–385. © 2002 Wiley‐Liss, Inc.

Journal

HippocampusWiley

Published: Jan 1, 2002

There are no references for this article.